
Address-Event Communication Using Token-Ring
Mutual Exclusion

Nabil Imam and Rajit Manohar
Computer Systems Laboratory, School of Electrical and Computer Engineering

Cornell University, Ithaca, NY 14853, U.S.A.
{ni49, rajit}@csl.cornell.edu

Abstract—We present a novel Address-Event Representation
(AER) transmitter circuit to communicate pulses of neural
activity (spikes) within a neuromorphic system. AER circuits
allow an ensemble of neurons to achieve large scale time-
multiplexed connectivity through a shared communication
channel. Our design makes use of token-ring mutual exclusion
where two circulating tokens in a 2D array of neurons provide
exclusive access to the shared channel. Compared to tradi-
tional arbitration-tree-based designs, our design has a higher
throughput and lower latency during high spiking activity.
This allows the circuit to serve larger neuronal densities
and higher spiking activity while maintaining the temporal
precision required by the system. Our design also eliminates
the address line loads that restricted scalability in previous
designs. In addition, our simpler circuit topology leads to area
and power savings.

I. INTRODUCTION

VLSI implementations of large scale biologically inspired
neural networks has been a topic of widespread interest in
the last two decades. Such neuromorphic systems [1] contain
models of biological neurons as their basic computational
units, massively interconnected to replicate the parallel
and distributed nature of biological computation [2]. These
chips are both tools for biological investigations as well as
platforms for implementing machine perception tasks.

Neurons communicate through pulses of activity called
spikes, and the asynchronous generation and modulation
of spike trains enable a network of neurons to operate
efficiently and reliably under energy constraints. In neuro-
morphic systems, biology is mimicked by using continous
time analog circuit implementations of neurons, and digital
asynchronous circuits for spike communication.

Fig. 1. Time-multimplexed connections through an AER transmitter.
Events are encoded by their address and communicated through a shared
output channel

The interconnect resources available in semiconductor

technologies are much lower than what is required to achieve
the thousands of connections that each neuron may have.
To overcome this problem, the address-event representation
(AER) has emerged as a standard. AER uses time-division
multiplexing to achieve large connectivity, using bandwidths
of hundreds of megahertz available in semiconductor tech-
nologies to serially transmit information between thousands
of neurons operating at tens of hertz. In an AER-based
system, an array of neurons share an output bus to transmit
spikes that are routed to a receiver. Fig. 1 illustrates how the
transmitter time multiplexes spike communication. Several
methods to share the output bus have been proposed, and
their performances have been compared [3]. In this paper we
present a new AER transmitter circuit based on a token-ring
mutual exclusion architecture. A row token and a column
token circulate in a two dimensional array of neurons, and
a neuron gains exclusive access to the output bus only when
it has both the row and the column tokens. A counter keeps
track of the tokens and sends out the row and column token
values whenever there is a spike. Depending on the spiking
activity, our circuit may either scan a certain section of
the array or circulate the token to different parts of the
array to provide bus access. This design shows significant
performance improvements over previous ones, and leads to
much simpler and therefore, more efficient circuits.

In Section II we discuss some previously designed AER
transmitters and the trade-offs involved. In Section III we
point out that the AER can be viewed as a system im-
plementing distributed mutual exclusion, and discuss sev-
eral implementation strategies as well as our proposed
architecture. Section IV discusses circuit implementation.
Simulation results and comparisons with previous designs
are provided in Section V, and we conclude in Section VI.

II. DESIGN TRADE-OFFS

Asynchrnous AER communication is preferred in neuro-
morphic systems since neurons may spend a considerable
amount of time being idle and may spike at spontaneous
instances. A clocked approach is not well suited for fast
servicing of these irregular spike patterns and it also leads
to unnecessary power consumption when the neurons are
idle. A clock-gated approach may mitigate the idle power



consumption, but leads to added latencies in spike commu-
nication.

One of the performance criteria for an AER transmitter
is the capacity of the output channel. This is defined as
the maximum rate at which spikes can be communicated
through the channel. The information coding strategy used
affects the capacity. Due to increasing neurobiological ev-
idence for spike-time dependent coding [4], we consider
the use of fixed height fixed width spikes that temporally
encode information. While transmitting this information
over a shared channel, latencies are added that reduce
timing precision. A neuromorphic system may require the
latencies to be bounded as low as possible to maximize
timing precision, or it may require the latencies to be kept
below the timing precision being used to synchronize the
system. The standard deviation of the latencies, known as
the temporal dispersion, is also a factor to be considered
since it indicates variability between individual neurons.
Another design consideration is to maximize the fraction
of accurately transmitted spikes. Since spiking activity can
overlap in time, there is an option of either queueing over-
lapping spikes or discarding all but one. Queuing results in
further latencies while discarding spikes leads to information
loss that is measured as error-rates. The utilization of the
channel capacity, defined as the throughput of the channel,
is lowered by bounds on these latencies and error-rates. For
given bounds, a design with a higher throughput will result
in an AER transmitter that can handle larger loads.

One way to design an AER transmitter is to have a
predetermined allocation of output channel access times
for each of the neurons. This scanning architecture may
be implemented synchronously or asynchronously with an
external counter, with neurons being sampled one by one at a
frequency that is dependent on the size of the population and
the latency bounds. Instead of a static allocation of channel
access times, the scanning rate can also be dynamic, with
more active neurons having a larger share of the channel.
When the activity in the neuron array is high, this method
of channel access will lead to good throughput since most
of the neurons will make use of the channel during their
allocated time. However, scanning is not the best solution if
the activity in the array is temporally and physically sparse
since unnecessary latencies and power consumption are
added. In particular, scanning requires inspecting a neuron’s
state even when the neuron does not have any spikes to
communicate.

Rather than having specific time-slots for output channel
access, the transmitter can be designed to give neurons
unfettered access. The ALOHA-based design [3][5] allows
each neuron to access the channel as soon as an event takes
place. Events overlapping in time are discarded and this
results in a trade-off between high error rates and limited
throughput for large array sizes. Improvements on these
limitations can be achieved by variations of the ALOHA-

based design such as the slotted-ALOHA protocol, where
events are allowed output channel access only on discrete-
time slots, and the priority encoder algorithm, where cells
are assigned a priority, and overlapping events are sent
according to the priority of their respective cells.

Fig. 2. AER design using an arbitration tree. Overlapping row requests
go through log(N) stages of arbitration, and are served one by one. For
simplicity, the figure only illustrates row arbitration. Column arbitration is
carried out in an identical manner

Another approach to transmitter design is the use of an
arbitration tree to queue temporally overlapping events [6].
Implementations of this approach arrange the neurons in two
dimensions in order to exploit locality of spiking activity.
When a neuron spikes it asserts a row request line that is
shared by other neurons in the same row. If multiple rows
have temporally overlapping events, then an arbitration tree
carries out communication with only one of the rows while
the others wait. Neurons of the row that won arbitration then
assert their column request lines, and a column arbitration
tree communicates with only one of the columns while the
others wait. The row and column acknowledge lines are
encoded, and the address of the spiking neuron is sent out as
the output address. The row arbitration process is illustrated
in Fig. 2. Since rows and columns that lose arbitration have
to wait till they eventually win, latencies are added to the
spike times. This is usually acceptable, since the latency
introduced by multiplexing is low enough (µs) compared to
the delay between individual spikes (ms). Each neuron has a
period of inactivity after they spike. This ’refractory period’
(ms), is much larger than the time it takes to service entire
neuron arrays. This ensures that all the neurons eventually
gets served by the AER.



Fig. 3. Encoding of the ack lines for N=2. Each acknowledge line drives
2 transistors, each of which is connected to 3 other transistor drains. As N
increases the load on these output lines limit the scalability of the system

Surplus channel capacity is required to minimize the
error rates in the unfettered design and the queuing time
in the arbitrated one. For the spike patterns seen in neural
systems, the required surplus capacity is much smaller in
the arbitration-based AER implementations [7]. Therefore
the tree-based design has become the standard for most
neuromorphic systems. Several modifications to the original
circuit have been suggested to improve its performance.

The complexity of address encoding circuits for a large
number of neurons is a problem in the tree-based design.
Encoding the event address using the row and column
acknowledge lines leads to large loads on the output. If
the row address is encoded in N bits, then each row
acknowledge line will drive N transistor gates, where each
transistor is connected to 2N −1 other drains. The switching
speed degrades and the energy per event increases with
N. Although these drawbacks can be reduced by encoding
the address at different stages of the arbitration tree [8]
they eventually restrict the scalability of the design. Fig 3
illustrates the encoding required for N=2.

Another problem with the tree-based approach is the po-
tential delay incurred while a spike waits to win arbitration.
If there is a spatiotemporal burst of spikes, e.g if all the
column of one row spike together, each column of size N
has to undergo O(log(N)) stages of arbitration per spike,
leading to large latencies. This is another factor that limits
the scalability of the array. These latencies can be reduced if
the arbitration sub-processes are replaced with their greedy
counterparts. In the greedy scheme, Fig. 4, each level of the
arbitration tree checks if there is a pending communication
on the other input channel before completing the second R3
action. If we are to assume that spikes are being generated
asynchronously and that a request line may be asserted at
any spontaneous time, then checking the value of the probe
of R1 and R2 involves negated probes [9], and the greedy
process requires two more arbiters and additional circuit
complexity for a robust implementation.

Further enhancements to improve the performance of the

tree-based approach has been suggested. The design in [10]
reads all the columns of a row together and initiates the
next cycle of row arbitration while the column addresses
are being sent out. The increase in throughput comes at
the expense of added circuit complexity. Pipelining the
receiver [7] that is reading the output channel can also
boost throughput. Merging the row and the column outputs
and sequentially sending the row followed by the column
addresses in one channel cuts down the required number of
output pads for a chip-level AER.

Fig. 4. Arbitration tree units and their greedy counterparts. If spiking
activity is clustered in space and time, latencies can be reduced by acknowl-
edging neighboring requests in sequence through the greedy arbitration
process. However, the negated probe leads to extra circuit complexity

Populations of neurons involved in sensory coding (such
as in the retina and the cochlea) often have small fractions in
physical proximity fire together or in synchrony while the
total population activity stays low. In neuromorphic chips
that implement sensory function, it is therefore desirable
to have an AER that can scan the active neurons without
having to scan through the entire array. This can eliminate
the latencies that incur when a spike waits to win arbitration.
The greedy arbitration tree does this at the expense of
additional complexity in the arbitration tree units, leading
to area and power penalties. In the next two sections, we
describe an AER transmitter design that can scan sections of
the array that spike together without incurring extra circuit
overhead. In addition, the AER keeps track of where the
spiking activity is, thereby eliminating the need to encode
the acknowledge lines.

III. MUTUAL EXCLUSION AND AER

Selecting a neuron row/column, and then selecting an
individual neuron within that row/column is simply a special
case of implementing the classic problem of distributed
mutual exclusion [11]. There are a number of ways to im-
plement such a protocol. The arbiter tree approach is simply
a special case where rows and columns are subdivided into
groups of size 2, 4, 8 and so on in subsequent levels of the



tree, and a 2-way mutual exclusion is carried out between
groups.

If we consider the array of neurons as a ring of processes
sharing a resource (the output channel), we can use one of
several algorithms [12] to implement reliable and efficient
AER transmitter circuits. These algorithms implement mu-
tual exclusion by giving one of several masters exclusive
access to a shared resource via private servers. The servers
communicate with each other to pass a token around, and
access to the shared resource can only be provided by a
server that has the token. The procedure is illustrated in
Fig. 5.

Fig. 5. Mutual exclusion on a ring of processes: A set of masters (M) share
a common resource. Each master has its own server (S) and a circulating
token among the servers grants exclusive access to the resource

The servers may be designed to circulate the token
in various ways. A simple approach is to circulate the
token continuously through the servers, sampling each of
the masters one by one. This corresponds to the scanning
method mentioned in Section II. Another method is to move
the token upon request. When a master wants access to
the resource, it communicates with its server. The server
either grants access if it has the token or asks one of its
neighboring servers for the token. The neighboring server
either passes the token if it has it or communicates with the
next neighbor. A token thus circulates unidirectionally in the
server ring, giving exclusive access to the shared resource. A
modification to this approach is to allow the token to travel
in both directions. The servers would have to keep track of
which direction the token last went, and make requests only
in that direction to avoid deadlock.

The rows of a neuron array can be considered as a set
of masters that request access to a shared channel whenever
any neuron in the row spikes. A set of row servers and
a circulating row token select spiking rows exclusively.
Similarly, the columns of the array can be considered as a
separate set of masters. Following the selection of a row, a
set of column servers and a circulating column token select
spiking columns exclusively. A neuron in the array gains
exclusive access to the output channel when both its row
and column servers get the tokens.

We chose unidirectional token circulation for our archi-
tecture since it leads to the most efficient implementation
to handle common spiking activity. Our design is illustrated
in Fig. 6. When a neuron spikes it asserts an open-drain

row request line to communicate with a row server. If the
row server has the row token, it acknowledges the request.
Otherwise it sends a communication request to the row
server directly below it. The latter server acknowledges
this request if it has the row token, thereby given it up.
Otherwise it communicates with the server below it and
waits for the acknowledge before acknowledging the original
communication. While the token is passed, a N-bit counter
that holds the row token value is also incremented. This
value always corresponds to the row server that currently
holds the token. If a row server has pending communication
from both its row and its neighboring server, it arbitrates
between the requests. Since only the row server that has
the token can acknowledge a row request, spiking rows are
selected exclusively. Once a neuron gets its row request
acknowledged, it asserts a column request line to commu-
nicate with its column server. The column servers have
a similar operation as the row servers. When the servers
pass the column token they assert an increment line that
updates the column count in the counter. Once a server with
a pending column request gets the token, it carries out a
second communication with the counter to send out the row
and the column count on the output channel.

Fig. 6. AER transmitter with token-ring mutual exclusion: Neurons (N )
communicate with a row server (RS) followed by a column server (CS).
The counter keeps track of the row token and column token and sends
out spike addresses when there is a communication request on its SEND
channel



IV. CIRCUIT IMPLEMENTATION

We describe the concurrent processes of our architecture
using Communicating Hardware Processes (CHP) and con-
struct them using Martin’s synthesis method [13].

A. Neuron Interface

The process that communicates with a row server and a
column server is the interface between a neuron and the AER
transmitter. Fig. 7 shows a block diagram for the process and
its CHP is:
S ≡

*[[S −→ R!;C !;R!;S?]]

Fig. 7. The neuron interface process. The row request line is open-drain in
order to avoid interference while the neurons in the row are being served. A
weak-pull down transistor pulls the line down once all the neurons release
the line

S is the communication channel with the neuron. When
there is a spike, the process carries out a two-phase hand-
shake with a row server through the R channel. This channel
is shared by all the neurons in the same row. Following this
communication, the process communicates with a column
server through the C channel. This communication com-
pletes after the column token has arrived and the counts have
been sent to the output channel. A second communication
with the R channel indicates that the row token is no longer
needed by the neuron. The handshaking expansion of the
process is given below. We use signals ending in ”.e” to
refer to the inverted sense of the acknowledge (the enable),
and signals ending in ”.d” to refer to the request (data).

*[[s.d]; r .d↓; [¬r .e]; c.d↑; [¬c.e];
s.e↓; c.d↓; [c.e]; r .d↑; [r .e][¬s.d]; s.e↑]

The R channel has an open drain request line so that
neurons in the same row do not attempt to pull the line
towards opposite voltages at the same time (interference).
Spiking neurons sharing a row request line can only pull
up the line (through their local signal r.d) and they release
it after communication with their respective column servers
has finished. When all the neurons release the line, a weak-
pull down transistor drives it low.

Since R communication occurs twice it is implemented
as a two phase handshake. The column server communi-
cation is implemented as a four phase handshake, and the
acknowledge signal back to the neuron is used to distinguish
the states between this handshake.

B. Row Server

The row server is illustrated in Fig. 8 and its CHP is given
below:
RS ≡

*[[R −→ [b −→ skip []¬b −→ D !; b↑ ];R?;R?
|U −→ [b −→ skip []¬b −→ D ! ]; INC !; b↓;U ?
]]

Fig. 8. Block diagram of the row server. Simultaneous requests from the
row and a neighboring server are arbitrated. The INC channel goes to the
counter and is shared by all the other row servers

The process waits for a communication request from
either a row (through the R channel) or the server above
(through the U channel). If both communicate together, the
signals are arbitrated. If the row has sent a request and has
won arbitration, the RS process acknowledges with a two
phase handshake if the local variable b, representing the
row token, is high. If the server doesn’t have the row token,
b is false and a communication request is sent to the row
server below. Upon acknowledgement, the process updates
b and acknowleges R. The second two phase handshake on
R is completed once the row request line has gone down,
i.e. after all the pending requests from the row have been
served. The handshaking expansion we used was:

*[[r .d −→
[b −→ skip
[]¬b −→ d .d↑; [¬d .e]; b↑; d .d↓; [d .e]
]; r .e↓; [¬r .d]; r .e↑
|u.d −→
[b −→ skip
[] ¬b −→ d .d↑; [¬d .e]; b↑; d .d↓; [d .e]
]; up.e↓; inc.d↑; [¬inc.e]; b↓; inc.d↓;
[inc.e]; [¬up.d]; up.e↑

]]



While reshuffling[14], we had to take into account the fact
that the increment line going to the counter is shared by all
the row servers. The full four-phase handshake of D needs
to finish before a server asserts the shared line in order to
avoid interference. To reduce the load on the shared line,
we minimized the guards required to drive the inc.d line.
While buffers can reduce this load, they add extra transitions
that slow down token movement.

During reshuffling, proper sequencing with respect to the
rest of the system needs to be kept in mind. For example, in
order to minimize latency, the row acknowledge line r.e can
be asserted without waiting for the full four phase handshake
with the D channel to finish. However, this would mean that
the neurons may initiate column communication before the
row token increment cycle has been initiated. Depending on
the position of the neuron in the array, and the position of
the column token, the column servers may initiate a send
cycle before the row increment cycle starts. While this is an
unlikely scenario, the shared wires may be quite long, and
it is best to avoid such timing assumptions. Therefore r.e is
pulled down only after the full handshake with D ends, i.e
only after the row increment cycle has completed.

The reshuffling used also avoided extra state variables
thus minimizing the number of transitions required for
servicing a request. The shared inc.d line that is driven
by all the row servers is state-holding. We add one shared
staticizer outside the row servers. Depending on the size of
the array, this staticizer may be divided up into equal pieces
and distributed across the line.

Note that the sequence [¬r .d]; r .e↑ leads to a poten-
tially unstable production rule. If a spike is asserted on
the row request line at the time the transition r .e↑ is
taking place, there will be a glitch in the circuit. A related
sequence of events in the neuron interface handshake is
[s.d]; r .d↓; [¬r .e]; c.d↑. If a spike occurs while the long
r.e wire is switching up, the column request line may be
asserted even though the corresponding row server may have
given up its token. These potentially unstable scenarios are
also present in the arbitration-tree-based transmitters since
they share the row request lines in an identical way. We
propose two methods to tackle this problem.

One solution is to introduce a ’wait’ command in the
neuron interface. This wait is added between the initial
check of [¬r .e] and the pull-up of the column request line.
The wait can be implemented with a simple delay line, with
the delay being equal to the time it takes for the entire r.e
line to be pulled up. After this wait, the r.e line is checked
a second time to confirm that it is low before proceeding.
If a neuron pulls up the row request line while it is on its
way down, there may be one of two scenarios:

• On the server side, if the request line has gone down
low enough, it will lose arbitration with a high u.d
(neighbor token request line) and r.e will go high. On
the neuron side, the wait command followed by the

second check of r.e will prevent the handshake from
proceeding.

• On the server side, if the request line has not gone low
enough to lose arbitration, or if the u.d signal is low,
then the pull up of r.e will be prevented. In the neuron
side, the column request line will be pulled up after the
second check for a low r.e.

The modification to the neuron interface HSE is shown
below:

*[[s.d]; r .d↓; [¬r .e]; delay start↑; [delay end];
[¬r .e]; c.d↑; [¬c.e]; s.e↓; c.d↓; [c.e]; r .d↑;
[r .e], [¬s.d]; s.e↑]

The length of the wait is only the time required to switch
one long wire (a few ns at most). The wait only affects the
service time of the first spike serviced in the row. The wait
of the other spikes proceed (and complete) while some spike
in the row is being serviced. Thus the addition of this wait
has a negligible change in the performance of the AER.

An alternate way of solving the glitch problem is to
synchronize the system such that all neurons receive their
synapses and evaluate their membrame potentials in the
same cycle, and spikes are sent out in the next cycle. This
will ensure that all neurons pull up their row request lines
within a time window that will avoid the unstable situation.

C. Column Server

The column server is illustrated in Fig. 9 and its CHP is
given below:

CS ≡
*[[C −→ [b −→ skip []¬b −→ L!; b↑ ];

C?;SEND !;C?
|R −→ [b −→ skip []¬b −→ L! ]; INC !; b↓;R?

]]

Fig. 9. Block diagram of the column server. Simultaneous requests from
the column and a neighboring server are arbitrated. The INC and SEND
channels communicate with the counter and are shared by all the other
column servers. There is a shared staticizer added to the incoming column
request line

The CHP is identical to that of the row server except for
an extra active communication action SEND that prompts



the counter to send out the row and column counts to the
output channel. In addition, unlike the row requeset lines,
the column request lines are not open-drain and do not have
weak pull-downs. Since the lines are state-holding, a shared
staticizer is used.

The handshaking expansion that was used was:

*[[c.d −→ [b −→ skip
[]¬b −→ l .d↑; [¬l .e]; b↑;

l .d↓; [l .e]
]; c.e↓; s.d↑; [¬s.e]; [¬c.d];
c.e↑; s.d↓; [s.e]

|r .d −→ [b −→ skip
[]¬b −→ l .d↑; [¬l .e]; b↑;

l .d↓; [l .e]
]; r .e↓; inc.d↑; [¬inc.e]; b↓;
inc.d↓; [inc.e]; [¬r .d]; r .e↑

]]

Similar to the row server case, we reshuffled the column
server handshaking expansion in order to minimize the load
on the shared channels INC and SEND , as well as to avoid
extra state variables and to maintain proper sequencing with
respect to the rest of the system.

D. Counter

Fig. 10 shows a block diagram of the modulo N counter.
Its CHP is:

COUNTER ≡
*[[INC R −→ rct := rct + 1; INC R?

[]INC C −→ cct := cct + 1; INC C?
[]SEND −→ B !(cct , rct); SEND?
]]

B is the log(N ×N) output channel. The local variables
rct and cct are log(N) bits each and represent the row and
column counts respectively. B!(cct, rct) represents both the
counts being sent to the output channel.

We can decompose the CHP as follows:

CONTROl ≡
*[[INC R −→ ifb := rct ; [v(ofb)]; rct := ofb;

ifb ⇓; [n(ofb)]; INC R?
[]INC C −→ ifb := cct ; [v(ofb)]; cct := ofb;

ifb ⇓; [n(ofb)]; INC C?
[]SEND −→ B !(cct , rct); SEND?
]]
‖
*[[v(ifb)]; ofb := ifb + 1; [n(ifb)]; ofb ⇓]

The predicates v(·) and n(·) indicate the validity and neu-
trality of the delay-insensitive code representing the counter
values. The notation x ⇑ is used to indicate setting the delay-
insensitive code for x to the appropriate valid value, and x ⇓
corresponds to setting the code to a neutral value [15].

The purpose of this decomposition is to use the same
increment block for updating both the row and column
counts. This is possible since rct and cct are incremented
on a mutually exclusive basis. The decomposed design is

illustrated in Fig. 10. We used the following handshaking
expansion for the control:

*[[inc r .d −→ x↓; ifb := rct ; [v(ofb)]; rct := ofb;
inc r .e↓; [¬inc r .d]; x↑; ifb ⇓;
[n(ofb)]; inc r .e↑

[]inc c.d −→ y↓; ifb := cct ; [v(ofb)]; cct := ofb;
inc c.e↓; [¬inc c.d]; y↑; ifb ⇓;
[n(ofb)]; inc c.e↑

[]send .d −→ w↓; b.d ⇑; [¬b.e]; send .e↓;
[¬send .d];w↑; b.d ⇓; [b.e];
send .e↑

]]

Fig. 10. Block diagram of the counter. The same increment block is used
to increment the row and column counts exclusively. Shared staticizers are
added to the inc.d and send.d lines

State variables w, x and y were used to distribute the
loads on the increment block input and the address output
channel. We can carry out a transformation to increase the
performance of the counter. Consider the following sequence
of actions:

[v(ofb)]; rct := ofb

Instead of waiting for all the bits of ofb to be valid before
changing rct, we can transform the expression as follows:

[(∧ :: v(ofbj ))]; (‖ j :: rctj ⇑)
. (‖ j : [v(ofb)j]); (‖ j :: rctj ⇑)
. (‖ j : [v(ofb)j]; rctj ⇑)
. (‖ j : [ofbj .t −→ rctj↑ []ofbj .f −→ rctj↓ ])

In the first line we explicitely wrote the handshaking
expansion for the sequence of actions. The second line uses
the fact that the conjunction of validities is equivalent to
waiting for each valid bit. The third line is due to the fact that
rctj only depends on ofbj . The fourth line explicitely sets
the correct value of rctj . With this transformation, the bits of
rct can change as soon as the corresponding bit of ofb has
become valid. The case for cct is identical. This sequence
of transformations is similar to those used to implement
function block style datapaths [15].

The incrementer block is made up of N identical one bit
adders, with the carry-in of the first adder always one, and
the carry-out of the last adder always ignored.

V. RESULTS AND DISCUSSION

The token-ring AER circuits presented in the previous
section have been designed and layed out in a 45 nm CMOS
SOI process. The AER circuit was designed to service



16x16 neuron arrays on a chip that has been submitted
for fabrication. In this section we present pre-layout SPICE
simulation results to compare the token-ring architecture
with the two basic techniques that are used to design
AER transmitters - scanning and tree-based arbitration. All
circuits being compared were sized with identical heuristics.
Since HSIM/HSPICE pre-layout simulations do not take into
account wire capacitances, we added wire loads to every gate
in the circuit to account for the large wire capacitances that
would be seen in the shared lines. Post-layout simulations
indicated that our load estimates are conservative.

In Section II we discussed how neural activity occur in
bursts, with spikes grouped together in space and time.
In these scenarios, a straightforward arbitration-tree based
design consisting of simple arbitrating sub-processes incur
large latencies since all spiking units in the neuron array
has to undergo log(N) stages of arbitration one by one
before being served. In contrast, the token-ring architecture
serves all neurons in spatial proximity one by one without
the requests having to go through multiple stages of arbi-
tration each time. Since neighboring neurons are scanned
sequentially with minimal latency in between, the token-ring
structure results in higher throughput. To achieve a desired
timing precision, this architecture is able to service a larger
neuron array and higher spiking activity. Fig. 11 illustrates
how the token-ring AER transmitter results in faster service
times compared to a tree-based one in a scenario where all
neurons in a row have spiked together.

Fig. 11. Service times for different sizes of a square array of neurons.
Since spikes occur in spatiotemporal clusters, we consider an entire row of
neurons spiking together. Larger array sizes lead to increased latencies in
the arbitration tree, and the token-ring scanning results in a distinct speed
up in service time

During periods of isolated activity in the neuron array the
arbitration tree may lead to lower latencies than the token-
ring because a token may have to travel O(N) stages before
a spike is processed. The worst-case latency in the token-
ring occurs when both the row token and column token need
to travel N − 1 stages before servicing a spike. To service
the isolated spike, the tree-based circuit needs to go through
the log(N) stages of row and column arbitration only once,
whereas the scanning architecture needs to sample N2 − 1
neurons in the worst case. The performance of the token-

ring is better than a purely scanning architecture since the
token simply skips the rows and columns that are inactive.

The added latencies when the token is out of position can
be reduced by modifying the servers so that the token can
move in both directions. The only modification necessary is
the addition of a binary variable in the server processes that
is switched on or off depending on which direction the token
has previously moved. Requests for the token are made in
the appropriate direction.

The case of isolated activity with the token out of position
is not a frequent one. The bursty activity that is very
characteristic of neural systems will negate the latency losses
when the token is out of position. Once the token arrives in
the neighborhood of the burst, the fast service time of the
spikes will make up for the time lost during token travel.
Fig. 12 shows the performance results for a scenario where
the token has to travel N-1 row servers to service a burst
of activity in one row. Once the token arrives at the correct
row, the columns are rapidly scanned to make up for the
initial lost time.

Fig. 12. Worst case latency during bursty activity in a square array of
neurons. Even if the token is in the worst-case position, rapid scanning of
a burst of spikes makes up for the latencies added due to token travel

For a sufficiently large array size or a sufficiently high
spiking rate, the average latency of the token-ring AER is
lower than that of the arbitration-tree AER. This is illustrated
in Fig. 13. The arbitration tree has a constant latency for a
given array size since all spikes need to undergo log(N)
stages of arbitration. This latency grows with the size of
the array. On the other hand, the average latency of the
token-ring is dependent on both the array size and the
amount of spiking activity. As the size of the array increases,
the average latency increases at a progressively slower rate
since the increased time of token travel is balanced by the
increased number of spiking neurons that fall in the path
of the travelling token. The larger the spiking activity, the
lower is the average latency since the length of token travel
per spike served goes down.

Since a counter keeps track of the tokens and outputs their
positions whenever there is pending communication on its
SEND channel, the token-ring architecture eliminates the
need for expensive encoding processes. As we discussed in



Fig. 13. Average latency per spike for different neuron array sizes
and different spike rates. The average latency in the arbitration tree is
independent of the spiking activity since every spike needs to undergo
log(N) stages of arbitration. Each neuron in the square array was assumed
to spike according to a Bernoulli distribution with mean p.

Section II, encoding using the row and column acknowledge
lines in the tree-based design leads to output line load
capacitances that are proportional to N ∗ 2N , where N is
the number of bits required to encode the address of each
dimension in the array. The exponential increase in these
output capacitances restricts the scalability of the desgin.
Using the N -bit counter allows much better scalability. The
capacitance in the shared increment lines is proportional to
2N , but can be easily reduced by splitting the shared wire
and recombining through intermediate OR gates

Minus the communication with the counter, the server
processes have the same number of communication actions
and the same number of arbiters as the arbitration tree units.
Thus both processes will have similar power consumptions
with regards to internal arbitration and communication with
neighbors. For large N values, the counter of the token-
ring transmitter has a lower transistor count (proportional
to N ) than the encoding processes of the tree-based design
(2N transistors on each of 2N output wires). Thus we may
expect some static power improvements in the token-ring
design. The counter also eliminates the large capacitance
(propotional to N ∗2N ) from 2N output wires at the expense
of 3 shared wires with lower capacitance (proportional to
2N , but can be reduced with intermediate OR gates). This
will significantly improve the dynamic power consumption
for clustered spiking activity since the output wires will be
frequently switching. In our implementation of the 16x16
token-ring AER, we found the static power consumption
to be 37 uW, and the dynamic power consumption during
serving an entire row of spikes to be 236 uW.

An arbitration tree with greedy units can scan neigh-
borhoods of bursty activity to increase the throughput (as
described in Section II). However, this comes at the expense
of more complicated circuits that include approximately
three times as many arbiters due to the necessity of checking
potentially unstable communication probes. The token-ring

Fig. 14. Comparison of the token-ring AER transmitter with previous
designs. (a) The original arbiter tree where each request needs to go
through log(N) stages of arbitration before being serviced. Expensive
encoding process to set the output lines restrict scalability of the design. (b)
Distributed encoding [8] reduces the load on the output lines. (c) A greedy
arbitration tree can efficiently service bursts of activity at the expense
of circuit complexity. (d) Token-ring mutual exclusion efficiently services
bursty activity and eliminates the need for address encoding.

Fig. 15. The simplicity of the token-ring topology leads to area savings
and ease of layout. (a) A row server measuring 11x8um2. (b) A column
server measuring 12x8um2. (c) A neuron interface measuring 8x5um2.
(d) The counter measuring 44x34um2

circuit has an inherent ability to scan spike bursts, and does
so with reduced circuit complexity. In addition the token-
ring servers have a simpler and more compact physical
implementation. The layouts of the individual units and their
sizes are shown in Fig. 15.

A comparison of the simple token-ring design with pre-
vious tree-based designs is illustrated in Fig. 14. The tree-
based designs can be interpreted as a token moving along
the branches of a tree. In the simple arbitration tree, a token
rests on the top of the tree and travels down to the leaves to
serve requests. After serving the request, the token travels
back to the top. In the greedy tree, the token serves branches
at the lower level if they have requests before moving back
to the top. Interprating the arbitration tree in this way allows
a modification of the designs to allow a counter to replace
the expensive encoding processes of the original designs.
This could be used in neuromorphic systems that require
rapid servicing of isolated spiking activity.

In Section II, we described another enhancement of the
AER transmitter that allows arbitration of other rows to
start while the column addresses of one row are being
sent. This improvement can be easily incorporated in the
token-ring design without the high circuit overhead of the
original design [10]. In order to gain the extra throughput
of this enhancement, the counter is split into a row counter
and a column counter. The row server uses an additional
communication channel to prompt the row counter to send
out the value of the row count to the output channel when



there is a row request. The row count is sent only once after
which the row token is allowed to move to other servers.
Thus the spike receiver will observe a row output from the
row counter followed by one or several column outputs from
the column counter.

In summary, compared to existing schemes for tree-
based AER and scanning, the token-ring based approach is
superior in terms of performance during common spiking
activity. Compared to greedy arbiter-based AER schemes,
the token-ring approach provides equivalent performance at
significantly reduced circuit complexity. The only situation
where a token-ring based approach is inferior is in the case
of an isolated spike in the array that is far away from the
current token location; however, this is a case of very sparse
spiking activity, and so the additional latency for the spike
is not problematic.

VI. CONCLUSION

Address-Event Representation can be viewed as an imple-
mentation of distributed mutual exclusion. We presented an
AER transmitter design using a token-ring mutual exclusion
protocol. Our token rings handled asynchronous activity in a
two-dimensional network of spiking neurons by distributing
two tokens across rows and columns of the network and
allowing spiking neurons to exclusively access the output
channel. Since our design included a counter that keeps track
of the token positions, large encoding loads on the output
bus were not necessary. Compared to arbitration-tree-based
designs, our architecture showed improvements in through-
put during bursty spiking activity, thereby allowing more
neurons to be serviced within given latency bounds. Our
design leads to much simpler, and therefore more efficient,
circuits compared to previous designs. We also demonstrated
that enhancements can be made to the token ring circuit
to further boost performance. Timing assumptions during
circuit synthesis were kept at a minimum. Our approach thus
resulted in a robust and efficient AER transmitter capable
of high-speed communication of bursty spiking activity.

APPENDIX

The CHP notation we use is based on Hoare’s CSP [16]. A full
description of CHP and its semantics can be found in [17]. What follows
is a short and informal description.

• Assignment: a := b. This statement means “assign the value of b to
a .” We also write a↑ for a := true , and a↓ for a := false.

• Selection: [G1 → S1 [] ... [] Gn → Sn], where Gi’s are boolean
expressions (guards) and Si’s are program parts. The execution of
this command corresponds to waiting until one of the guards is true,
and then executing one of the statements with a true guard. The
notation [G] is short-hand for [G → skip], and denotes waiting
for the predicate G to become true. If the guards are not mutually
exclusive, we use the vertical bar “|” instead of “[].”

• Repetition: *[G1 → S1 [] ... [] Gn → Sn]. The execution of
this command corresponds to choosing one of the true guards and
executing the corresponding statement, repeating this until all guards
evaluate to false. The notation *[S] is short-hand for *[true →
S].

• Send: X !e means send the value of e over channel X .

• Receive: Y ?v means receive a value over channel Y and store it in
variable v .

• Probe: The boolean expression X is true iff a communication over
channel X can complete without suspending.

• Sequential Composition: S ;T
• Parallel Composition: S ‖ T or S ,T .

REFERENCES

[1] C. Mead, “Neuromorphic electronic systems,” Proceedings of the
IEEE, vol. 78, pp. 1629 –1636, Oct. 1990.

[2] C. Mead, Analog VLSI and neural systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1989.

[3] E. Culurciello and A. Andreou, “A comparative study of access
topologies for chip-level address-event communication channels,”
Neural Networks, IEEE Transactions on, vol. 14, no. 5, pp. 1266
– 1277, 2003.

[4] Y. Dan and M.-M. Poo, “Spike timing-dependent plasticity: From
synapse to perception,” Physiol Rev 86:1033-1048, 2006.

[5] A.S.Tanenbaum, Computer Networks. Upper Saddle River,NJ:
Prentice-Hall, 1996.

[6] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gille-
spie, “Silicon auditory processors as computer peripherals,” Neural
Networks, IEEE Transactions on, vol. 4, pp. 523 –528, May 1993.

[7] K. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on, vol. 47, pp. 416 –434, May
2000.

[8] J. Georgiou and A. Andreou, “High-speed, address-encoding arbiter
architecture,” Electronics Letters, vol. 42, no. 3, pp. 170 – 171, 2006.

[9] R. Manohar, M. Nystrom, and A. J. Martin, “Precise exceptions in
asynchronous processors,” in Proceedings of the 2001 Conference on
Advanced Research in VLSI, ARVLSI ’01, (Washington, DC, USA),
pp. 16–, IEEE Computer Society, 2001.

[10] K. Boahen, “A burst-mode word-serial address-event link-i: transmit-
ter design,” Circuits and Systems I: Regular Papers, IEEE Transac-
tions on, vol. 51, no. 7, pp. 1269 – 1280, 2004.

[11] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation.
Reading, Massachusetts: Addison Wesley Publishing Company, Inc.,
1988.

[12] A. J. Martin, “Distributed mutual exclusion on a ring of processes,”
Sci. Comput. Program., vol. 5, pp. 265–276, October 1985.

[13] A. J. Martin, “Compiling communicating processes into delay-
insensitive vlsi circuits,” tech. rep., Pasadena, CA, USA, 1986.

[14] R. Manohar, “An analysis of reshuffled handshaking expansions,”
in Asynchronous Circuits and Systems, 2001. ASYNC 2001. Seventh
International Symposium on, pp. 96 –105, 2001.

[15] A. J. Martin, “Asynchronous datapaths and the design of an asyn-
chronous adder,” tech. rep., Pasadena, CA, USA, 1991.

[16] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[17] A. J. Martin, “Programming in VLSI: From communicating processes
to delay-insensitive circuits,” in Developments in Concurrency and
Communication, UT Year of Programming Series (C. A. R. Hoare,
ed.), pp. 1–64, Addison-Wesley, 1990.


