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ABSTRACT
We present the design of a high-performance, highly pipelined
asynchronous FPGA. We describe a very fine-grain pipelined
logic block and routing interconnect architecture, and show
how asynchronous logic can efficiently take advantage of this
large amount of pipelining. Our FPGA, which does not
use a clock to sequence computations, automatically “self-
pipelines” its logic without the designer needing to be ex-
plicitly aware of all pipelining details. This property makes
our FPGA ideal for throughput-intensive applications and
we require minimal place and route support to achieve good
performance. Benchmark circuits taken from both the asyn-
chronous and clocked design communities yield throughputs
in the neighborhood of 300–400 MHz in a TSMC 0.25µm
process and 500–700 MHz in a TSMC 0.18µm process.

Categories and Subject Descriptors
B.7.1 [Integrated Circuit]: Types and Design Styles—
Gate Arrays, VLSI ; B.6.1 [Logic Design]: Design Styles—
Parallel Circuits

General Terms
Design

Keywords
Asynchronous circuits, concurrency, correctness by construc-
tion, pipelining, programmable logic.

1. INTRODUCTION
We investigate the properties of pipelined FPGA architec-

tures from the perspective of an asynchronous circuit imple-
mentation. Asynchronous circuits, whose temporal behavior
is not synchronized to a global clock, allow logic computa-
tions to proceed as concurrently as possible. Concurrent
asynchronous logic, in the context of pipelined FPGAs, en-
ables a different architectural design point than what is pos-
sible in a more traditional clock-based design.
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While the first FPGA was introduced by Xilinx in 1985
and the first asynchronous microprocessor was designed at
Caltech in 1989 [16], very little work in the last two decades
has successfully combined asynchronous and programmable
circuit technology. Previously proposed asynchronous FPGA
architectures [5, 9, 12, 18] based on clocked programma-
ble circuits were not efficient at prototyping pipelined asyn-
chronous logic and did not demonstrate significant advan-
tages over clocked FPGAs. However, recent work by the
authors has developed programmable asynchronous circuits
that are inherently pipelined, efficiently implement asyn-
chronous logic, and are competitive with clocked circuits [21].

In this paper we design a high-performance FPGA archi-
tecture that is optimized for asynchronous logic and features
pipelined switch boxes, heterogeneous pipelined logic blocks,
and pipelined early-out carry chains. The logic block con-
tains a 4-input LUT and additional asynchronous-specific
logic to efficiently implement asynchronous computations.
The asynchronous FPGA interconnect is compatible with
the VPR place and route tool [1], and we show that this
FPGA architecture achieves high-throughput performance
for automatically placed and routed asynchronous designs.

The main benefits of our pipelined asynchronous FPGA
include:

• Ease of pipelining: enables high-throughput logic
cores that are easily composable and reusable, where
asynchronous handshakes between pipeline stages en-
force correctness (not circuit delays or pipeline depths
as in clocked circuits).

• Event-driven energy consumption: automatic shut-
down of unused circuits (perfect “clock gating”) be-
cause the parts of an asynchronous circuit that do not
contribute to the computation being performed have
no switching activity.

• Robustness: automatically adaptive to delay varia-
tions resulting from temperature fluctuations, supply
voltage changes, and the imperfect physical manufac-
turing of a chip, which are increasingly difficult to con-
trol in deep submicron technologies.

• Tool compatibility: able to use existing place and
route CAD tools developed for clocked FPGAs.

This paper is organized as follows. Section 2 reviews asyn-
chronous logic and pipelined circuits. In Sections 3, 4, and 5
we describe the architecture, logic block, and interconnect
of our pipelined asynchronous FPGA. Section 6 discusses
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Figure 1: Dual-rail four-phase asynchronous
pipelines: (a) channel abstraction, (b) handshake
abstraction, and (c) signal level.

asynchronous logic synthesis, Section 7 presents experimen-
tal results, and Section 8 reviews related work. We discuss
future directions for asynchronous FPGA design in Section 9
and conclude in Section 10.

2. ASYNCHRONOUS LOGIC
The class of asynchronous circuits we consider in this pa-

per are quasi-delay-insensitive (QDI). QDI circuits are de-
signed to operate correctly under the assumption that gates
and wires have arbitrary finite delay, except for a small num-
ber of special wires known as isochronic forks [15] that can
safely be ignored for the circuits in this paper. Although we
size transistors to adjust circuit delays, this only affects the
performance of a circuit and not its correctness.

We design asynchronous systems as a collection of concur-
rent hardware processes that communicate with each other
through message-passing channels. These messages consist
of atomic data items called tokens. Each process can send
and receive tokens to and from its environment through com-
munication ports. Asynchronous pipelines are constructed
by connecting these ports to each other using channels, where
each channel is allowed only one sender and one receiver.

Since there is no clock in an asynchronous design, pro-
cesses use handshake protocols to send and receive tokens
on channels. Most of the channels in our FPGA use three
wires, two data wires and one enable wire, to implement a
four-phase handshake protocol (Figure 1). The data wires
encode bits using a dual-rail code, such that setting “wire-
0” transmits a “logic-0” and setting “wire-1” transmits a
“logic-1”. A dual-rail encoding is a specific example of a
1ofN asynchronous signaling code that uses N wires to en-
code N values, such that setting the nth wire encodes data
value n. The four-phase protocol operates as follows: the
sender sets one of the data wires, the receiver latches the
data and lowers the enable wire, the sender lowers all data
wires, and finally the receiver raises the enable wire when it
is ready to accept new data. The cycle time of a pipeline
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Figure 2: Asynchronous pipeline stages: (a) weak-
condition half-buffer (WCHB) and (b) precharge
half-buffer (PCHB).

stage is the time required to complete one four-phase hand-
shake. The throughput, or the inverse of the cycle time, is
the rate at which tokens travel through the pipeline.

2.1 Pipelined Asynchronous Circuits
High-throughput, fine-grain pipelined circuits are critical

to efficiently implementing logic in an asynchronous FPGA
architecture. Fine-grain pipelines contain only a small a-
mount of logic (e.g., a 1-bit adder) and combine computa-
tion with data latching, removing the overhead of explicit
output registers. This pipeline style has been used in several
high-performance asynchronous designs, including a micro-
processor [17].

Figure 2 shows the two types of asynchronous pipelines
that are used in our asynchronous FPGA.1 A weak-condition
half-buffer (WCHB) pipeline stage is the smaller of the two
circuits and is useful for token buffering and token copying.
The half-buffer notation indicates that a handshake on the
receiving channel, L, cannot begin again until the handshake
on the transmitting channel, R, is finished [11]. A precharge
half-buffer (PCHB) pipeline stage has a precharge pull-down
stack that is optimized for performing fast token computa-
tions. Since WCHB and PCHB pipeline stages have the
same dual-rail channel interfaces, they can be composed to-
gether and used in the same pipeline.

Asynchronous pipelines can be used in programmable logic
applications by adding a switched interconnect between its
pipeline stages, which configures how their channels con-
nect together. Figure 3 shows one such programmable in-
terconnect, where connection boxes and switch boxes are
used to connect channels between logic blocks. However,
the throughput of an asynchronous pipeline is severely de-

1The C-element is an asynchronous state-holding circuit
that goes high when all its inputs are high and goes low
when all its inputs are low.



graded if its channels are routed through a large number of
non-restoring switches. For example, a pipeline that con-
tains four switches between pipeline stages is 59% slower
than its full-custom implementation [21]. Using SPICE we
measured only a 4% improvement on an asynchronous inter-
connect when these non-restoring switches were interspersed
with restoring switches. As a result, we instead designed a
pipelined interconnect architecture that uses pipelined switch
boxes and guarantees at most two non-restoring switches be-
tween pipeline stages. This ensures a high throughput asyn-
chronous FPGA and minimizes the performance lost due to
using a switched interconnect.

2.2 Retiming and Slack Elasticity
A slack-elastic system [14] has the property that increas-

ing the pipeline depth, or slack , on any channel will not
change the logical correctness of the original system. This
property allows a designer to locally add pipelining any-
where in the slack-elastic system without having to adjust
or resynthesize the global pipeline structure of the system
(although this can be done for performance reasons, it is not
necessary for correctness). While many asynchronous sys-
tems are slack elastic, including an entire high-performance
microprocessor [17], any non-trivial clocked design will not
be slack elastic because changing local pipeline depths in a
clocked circuit often requires global retiming of the entire
system.2

To simplify logic synthesis and channel routing, we de-
signed the pipelines in our asynchronous FPGA to be slack
elastic. This allows logic blocks and routing interconnects to
be implemented with a variable number of pipeline stages,
whose pipeline depth is chosen for performance and not be-
cause of correctness. More importantly, in a pipelined in-
terconnect, the channel routes can go through an arbitrary
number of interconnect pipeline stages without affecting the
correctness of the logic. The logic mapped to a slack-elastic
FPGA need not be aware of the depth of the logic block
pipelining or the length of its channel routes, since it will
operate correctly regardless of how many pipeline stages ex-
ist. We call this property self-pipelining because the designer
only specifies the functionality and connectivity of the logic,
but does not explicitly specify the pipeline details.

A slack-elastic FPGA has an increased amount of flexil-
ity over a clocked FPGA, where pipeline depths must be
deterministic and specified exactly for the logic to function
correctly. For example, we will show that our pipelined asyn-
chronous FPGA yields good performance without requiring
banks of retiming registers, which are necessary for logi-
cal correctness in highly pipelined clocked FPGA architec-
tures [23]. In addition, we use simple place and route tools
that do not need knowledge of logic block pipeline depths,
pipelined interconnects, or even asynchronous circuits!

3. FPGA ARCHITECTURE
Our asynchronous FPGA has an “island-style” architec-

ture with pipelined logic blocks, pipelined switch boxes,
and unpipelined connection boxes (Figure 3). A logic block
has four inputs and four outputs, equally distributed on its
north, east, south, and west edges. The routing tracks are

2This limitation in a clocked system can be lifted by adding
valid bits to all data, which emulates an asynchronous hand-
shake at the granularity of a clock cycle.
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Figure 3: Asynchronous FPGA: (a) island-style ar-
chitecture and (b) fully-populated connection boxes.

dual-rail asynchronous channels and span only single logic
blocks. The connection boxes are fully-populated and the
switch boxes have Xilinx-style routing capabilities.

Configuration of our asynchronous FPGA is done using
clocked SRAM-based circuitry. This allows us utilize the
same configuration schemes used in clocked FPGAs. In this
design we constructed the simplest configuration method us-
ing shift-register type configuration cells that are connected
serially throughout the chip. During programming the asyn-
chronous portion of the logic is held in a passive reset state
while the configuration bits are loaded. The configuration
clocks are disabled after programming is complete and the
asynchronous logic is enabled.

4. PIPELINED LOGIC BLOCK
The pipelined logic block architecture for our asynchronous

FPGA is shown in Figure 4. The main parts of the logic
block, which will be discussed in detail in the next sections,
are the input pipelining and routing, the pipelined compu-
tation block, and the output pipelining and routing.

4.1 Input Buffers
The input buffers are single WCHB pipeline stages that

buffer input tokens from the connection box switches and
the mux switches used to route the logic block inputs to the
function unit, conditional unit, or output copy parts of the
logic block. Upon system reset, the input buffers can option-
ally initialize the internal logic block channels (N,E,S,W)
with tokens, which is often necessary in an asynchronous
system to setup token-ring pipelines and other state-holding
pipelines. Three constant token sources can also be routed
to any of the function or conditional unit inputs.

4.2 Function Unit
The function unit shown in Figure 5 can implement any

function of four variables and provides support for efficient
carry generation in addition and multiplication applications.
While this unit is logically based on the configurable logic
block used in the Xilinx VirtexTM FPGA [24], our design is
significantly different because it is pipelined and fully asyn-
chronous. The main pipeline of the function unit consists of
an address decoder, a lookup table (LUT), and an XOR out-
put stage. A secondary pipeline, which is optionally config-
ured when carry computations are necessary, examines the
function unit inputs and generates the carry-out. The out-
put of the function unit can be copied to the output copy,
to the state unit, and/or to the conditional unit.
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The address decode stage reads the four function unit in-
puts and generates a 1of16 encoded address. The 1of16 en-
coding on the address channel simplifies indexing into the
LUT and is the only asynchronous channel in our design
that is not dual-rail encoded. The asynchronous four-input
LUT circuit shown in Figure 6 uses a modified PCHB-style
pipeline circuit (the handshake control circuit is not shown).
Since there are sixteen memory elements in a four-input
LUT and the 1of16-encoded address guarantees no sneak
paths will occur in the pull-down stack, the asynchronous
LUT circuit can use a virtual ground generated from the
“ precharge” signal instead of the foot transistors used in a
normal PCHB pipeline stage. This reduces the area required
for the LUT and makes it faster than our previous asyn-
chronous LUT circuit [21] because it has fewer series transis-
tors and does not need internal-node precharging circuitry
to compensate for charge sharing issues. The address de-
code and function lookup table circuits are the throughput-
limiting part of our pipelined asynchronous FPGA, and we
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Figure 6: Asynchronous LUT circuit.

sized the transistors in these circuits to operate at 400 MHz
in TSMC 0.25µm.

When the function unit is configured to perform carry
computations, the XOR stage outputs the logical “xor” of
the LUT output and the carry-in to produce the function
unit’s output. A carry computation would require two LUTs
if the function unit did not have this extra built-in XOR
stage. However, adding an additional pipeline stage to the
function unit increases the input-to-output latency on its
critical pipeline path. To evaluate the performance impact
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of this pipeline stage we designed an unpipelined version of
the XOR stage that has minimal latency when it is config-
ured not to use the carry-in. We measured the performance
of the unpipelined XOR on typical pipelined designs mapped
to our asynchronous FPGA architecture and compared them
against the performance of the proposed pipelined XOR
stage. For linear pipeline designs the pipelined XOR stage
was 20% faster in throughput, but with token-ring pipelines
the unpipelined XOR stage was 8% faster. By using the
pipelined XOR stage we chose to trade slightly decreased
token-ring performance for greatly increased linear pipeline
performance.

The carry pipeline in the function unit is used to create
carry chains for arithmetic computations. The AND stage
either propagates the A input to the CMUX stage for ad-
dition carry chains or outputs the logical “and” of the A
and B inputs to the CMUX stage for multiplication carry
chains. Depending on the value of the LUT output, the
CMUX stage generates the carry-out by selecting between
the carry-in and the output of the AND stage. When the
carry-out does not depend on the carry-in and the CMUX
has received a token from the AND stage, it does not need
to wait for the carry-in token to generate the carry-out to-
ken. This early-out CMUX allows the construction of asyn-
chronous ripple-carry adders that exhibit average-case be-
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Figure 9: Output copy circuit.

havior in their carry chains. In contrast, clocked ripple-carry
adders must tolerate the worst-case behavior of their carry
chains. Carry chains can be routed using the normal inter-
connect or using low latency carry channels that run verti-
cally south-to-north between adjacent vertical logic blocks.

4.3 Conditional Unit
The conditional unit allows logic processes to condition-

ally send tokens on output channels or to conditionally re-
ceive tokens on input channels. The conditional unit is heav-
ily used in control dominated asynchronous circuits and less
so in other computation circuits.

Figure 7 shows the two possible configurations for the con-
ditional unit: a two-way controlled merge process or a two-
way controlled split process. The merge process is a con-
ditional input process that operates by reading a “control”
token on the G channel, conditionally reading a “data” token
from A (if the “control” token equals zero) or from B (if the
“control” token equals one), and finally sending the “data”
token on the Y output channel. Likewise, the split process
is a conditional output process that operates by reading a
“control” token on the G channel, reading a “data” token
on the A channel, and then conditionally sending the “data”
token on Y (if the “control” token equals zero) or on Z (if
the “control” token equals one). The asynchronous merge
and split processes are similar to clocked multiplexers and
demultiplexers, which operate on signals instead of tokens.

The conditional unit is only slightly larger than a stan-
dard two-way asynchronous merge process. Figure 8 shows
the circuit used to implement the conditional unit. We note
that the handshake completion circuitry in the conditional
unit is much more complex than for a normal PCHB-style
pipeline stage and is the reason why we cannot simply make
all channels conditional in the logic block. By using the
same precharge transistor stacks and handshake control cir-
cuits for both the merge and split processes, the area of the
conditional unit is approximately 40% smaller than our pre-
vious conditional unit design [21] that used separate split
and merge circuits.
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4.4 Output Copy
The output copy pipeline stage performs both token copy-

ing and token routing. This stage is used to copy result
tokens from the logic block, which arrive on channels A
and B, and statically route them to the four output ports
(Nout,Eout,Sout,Wout) of the logic block. The output copy
stage can support at most two concurrent copy processes
(with input channels A and B respectively) that copy to-
kens to 1, 2, 3, or 4 of the output ports, with the restriction
that the output ports cannot be shared between the two
copy processes. Sharing output ports is not allowed because
the same channel would have two token senders, which is
equivalent to having two competing drivers in a clocked cir-
cuit.

As shown in Figure 4, the function unit and conditional
unit can both source tokens to the output copy pipeline
stage. The input buffers can also source tokens to the out-
put copy, which allows the logic block to support low-latency
copy processes that bypass the function and conditional
units. However, since the output copy has only two input
channels, the output copy can handle at most two token
streams. Result tokens that are not needed by other logic
blocks should be routed to the token sink instead of the
output copy.

The circuit that implements the output copy, shown in
Figure 9, is approximately 35% smaller than our previous
output copy design [21] because it uses half the number of
WCHB pipeline stages. It is important to note that after the
muxes in the output copy circuit have been configured by the
configuration memory, the output copy circuit operates as
two completely independent and concurrent copy processes.

4.5 State Unit
The state unit is a small pipeline built from two WCHB

stages that feeds the function unit output back as an in-
put to the function unit, forming a fast token-ring pipeline.
Upon system reset, a token is generated by the state unit to
initialize this token-ring. This state feedback mechanism is

 

  LB2LB1

switch box mismatch

8 9

100

200

300

400

500

600

700

 

 

0
0

 

1 2 3 4 5 6 7

 

f [MHz]

Switch Box Mismatch

0.18µm

0.25µm

Figure 12: Performance of linear pipelines.
 

   

switch boxes

LB1 LBnLB2

 

 

0 1 2 3 4 5 6 7 8 9

100

200

300

400

500

600

700

 

 

 

 

 

 

0

n=4 (0.25µm)

n=3 (0.25µm)

n=2 (0.25µm)

n=4 (0.18µm)

n=3 (0.18µm)

f [MHz]

Switch Boxes

n=2 (0.18µm)

Figure 13: Performance of token-ring pipelines.

superior to our previous design [21], where all feedback token
rings needed to be routed through the global interconnect.

5. PIPELINED INTERCONNECT
We built pipelined switch boxes into our asynchronous

FPGA interconnect to ensure high token throughput be-
tween communicating logic blocks. Figure 11 shows a pipe-
lined switch point in our asynchronous “Xilinx-4000 style”
switch box, where wire segments only connect to each other
when they are in the same track. This is similar to the
switch points used in high-speed clocked FPGAs [23].

In our asynchronous interconnect, a channel connecting
two logic blocks can be routed through an arbitrary number
of pipelined switch boxes without changing the correctness
of the resulting logic system since our asynchronous FPGA
is slack elastic. However, the system performance can still
decrease if a channel is routed through a large number of
switch boxes. To determine the sensitivity of channel route
lengths on pipelined logic performance, we varied the num-
ber of switch boxes along a route for typical asynchronous
pipelines.
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Figure 12 shows the performance of a branching linear
pipeline using pipelined switch boxes and the FPGA logic
blocks configured as function units. Tokens are copied in
logic block LB1, travel through both branches of the pipeline,
and join in logic block LB2. Since the speed of the function
unit is the throughput-limiting circuit in our asynchronous
FPGA design, this pipeline topology gives an accurate mea-
sure for linear pipeline performance. The frequency curve
shows that an asynchronous pipelined interconnect can tol-
erate a relatively large pipeline mismatch (4–5 switch boxes)
before the performance begins to gradually degrade. This
indicates that as long as branch pathways have reasonably
matched pipelines we do not need to exactly balance the
length of channel routes with a bank of retiming registers.
In contrast, in clocked FPGAs it is necessary for correctness
to exactly retime synchronous signals routed on pipelined
interconnects using banks of retiming registers [23].

Figure 13 shows the performance trends for token-ring
pipelines using the FPGA logic blocks configured as func-
tion units, such that one token is traveling around the ring.
For pipelined interconnects, adding switch box stages to a
token-ring will decrease its performance and indicates that
the routes of channels involved in token-rings should be
made as short as possible. The frequency curves in Fig-
ure 13 are worst-case because all the logic blocks were con-
figured with their function units enabled, requiring a token
to travel through five pipeline stages per logic block. If the
logic blocks were instead configured to use the conditional
unit or the low-latency copies, then the token-ring perfor-
mance would approach the performance of a linear pipeline
because a token would travel through fewer pipeline stages.
In addition, token rings used to hold state variables can of-
ten be implemented using the state unit, which localizes the
token ring inside the logic block and has the same through-
put as a linear pipeline.

6. LOGIC SYNTHESIS
Logic synthesis for an asynchronous FPGA follows sim-

ilar formal synthesis methods to those used in the design
of full-custom asynchronous circuits [13], whose steps are
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Figure 15: Copying control tokens to wide datap-
aths: (a) minimum latency, (b) cluster-friendly, and
(c) integrated copy trees.

shown in Figure 14. We begin with a high-level sequen-
tial specification of the logic and apply semantics-preserving
program transformations to partition the original specifica-
tion into high-level concurrent function blocks. The function
blocks are further decomposed into sets of fine-grain, highly
concurrent processes that are guaranteed to be functionally
equivalent to the original sequential specification. To main-
tain tight control over performance, this decomposition step
is usually done manually in full-custom designs. However,
for FPGA logic synthesis we are developing a concurrent
dataflow decomposition [20] method that automatically pro-
duces fine-grain processes by detecting and removing all un-
necessary synchronization actions in the high-level logic.

The resulting fine-grain processes are small enough (i.e.,
bit-level) to be directly implemented by the logic blocks of
our asynchronous FPGA. Currently, the logic packing step,
which clusters multiple fine-grain processes into a single
physical logic block, is done manually and the place/route
and configuration steps are done automatically. Observe
that the asynchronous FPGA synthesis flow avoids the low-
level, labor-intensive, and asynchronous-specific steps of the
full-custom synthesis flow (e.g., handshaking expansions, tran-
sistor netlist generation, and physical design).

Logic computations in asynchronous designs behave like
fine-grain static dataflow systems [3], where a token trav-
eling through an asynchronous pipeline explicitly indicates
the flow of data. Channel handshakes ensure that pipeline
stages consume and produce tokens in sequential order so
that new data items cannot overwrite old data items. In this
dataflow model, data items have one producer and one con-
sumer. Data items needed by more than one consumer are
duplicated by copy processes that produce a new token for
every concurrent consumer. In contrast, clocked logic uses
a global clock to separate data items in a pipeline, which
allows data items to fan out to multiple receivers because
they are all synchronized to the clock. Furthermore, the
default behavior for a clocked pipeline is to overwrite data
items on the next clock cycle, regardless of whether they
were actually used for a computation in the previous cycle.



To synthesize logic for our asynchronous FPGA, a de-
signer only needs to understand how to program for a token-
based dataflow computation model and is not required to
know the underlying asynchronous pipelining details. This
type of asynchronous design, unlike clocked design, sepa-
rates logical pipelining from physical pipelining. An FPGA
application that is verified to functionally operate at the
dataflow level is guaranteed to run on any pipelined imple-
mentation of our asynchronous FPGA. For example, an ap-
plication that operates correctly with the FPGA described
in this paper will also work with an FPGA that contains
twice as much pipelining, without requiring the retiming
conversions necessary for clocked applications.

The main difference in logic density between asynchronous
and clocked logic is the overhead of copying tokens to mul-
tiple receivers. For logic with small copies to four or fewer
receivers, the output copy in the logic block provides zero
overhead copy support. However, logic requiring wide copies
suffers from the overhead of having to construct a copy tree
with additional logic blocks. A typical example of a copy
tree, shown in Figure 15, is when a control token needs to
be copied to each bit of a wide datapath. Often the latency
of a control token is not critical and the copy tree can be
constructed using two-way copies as shown in Figure 15(b).
This potentially allows the copy tree to be integrated with
the datapath logic and have zero overhead in terms of logic
block counts. The copy overhead for the benchmarks used in
this paper ranged from 20%–33% compared with equivalent
synchronous implementations, although we did not attempt
to aggressively integrate copy trees.

7. EXPERIMENTAL RESULTS
We laid out our asynchronous FPGA design using conser-

vative SCMOS design rules that obey rules for both TSMC
0.18µm and TSMC 0.25µm, which utilizes five layers of
metal. The area of an arrayable tile is approximately 2.6Mλ2

(37440µm2 in 0.25µm and 21060µm2 in 0.18µm) with rout-
ing tracks of width four. The computation units consume
40% of the total area, followed by the switch box (25%),
input pipelining (16%), output pipelining (10%), and con-
nection boxes (8%). Using SPICE we obtained delay values
from the extracted layout and used these to back-annotate
an asynchronous switch-level simulator of our FPGA that
allowed us to accurately evaluate the performance of bench-
mark circuits.

The peak operating frequency of our asynchronous FPGA
is 400 MHz in 0.25µm and 700 MHz in 0.18µm. Our design
is about twice as fast as commercial FPGAs, but approx-
imately two times larger. However, our FPGA is half the
size of a highly pipelined clock FPGA [23] and of compa-
rable performance (250 MHz in 0.4µm). Although our per-
formance is 36% slower than hand-placed benchmarks on a
“wave-steered” clock FPGA [19], it is almost twice as fast
for automatically-placed benchmarks.

The peak energy consumption is 18 pJ/cycle in 0.25µm
and 7 pJ/cycle in 0.18µm for a logic block configured as a
four-input LUT.3 In addition, the interconnect energy con-
sumption per switch point is 3 pJ/cycle in 0.25µm and 1

3The absolute energies reported by our asynchronous SPICE
simulator have not been validated and are suspected to be
higher than the actual values, however, we deem that the rel-
ative energies are reasonable to compare against each other
(in the same manufacturing process).

pJ/cycle in 0.18µm. Due to the large amount of pipelining
in our current design, the energy consumption of our asyn-
chronous FPGA is higher than the 26pJ/cycle of our previ-
ous design [21] in 0.25µm. However, most of the transistors
in our layout are over-sized and we have yet to optimally size
them for the peak operating frequency, which will make the
energy consumption more manageable. Since QDI circuits
do not glitch and consume power only when they contain
tokens, an asynchronous FPGA automatically has perfect
clock gating without the overhead associated with dynamic
clock gating in synchronous designs. As a result of this
event-driven energy consumption, the power consumption
of an asynchronous FPGA is proportional to the number of
tokens traveling through the system.

To evaluate the performance of our asynchronous FPGA,
we synthesized a variety of benchmark circuits that were
used in previous clocked and asynchronous designs. The
benchmarks in Table 1 are classified into three categories:
arithmetic, signal processing, and random circuits. Approx-
imately half of these benchmarks were optimized for FPGA
implementations (e.g., scaling accumulator, FIR filter core,4

and cross-correlator) and the other half were not developed
specifically for FPGAs (e.g., booth multiplier, systolic con-
volution, and write-back unit).

We placed and routed these benchmarks using VPR [1]
and used its default settings, except to disable timing-driven
optimizations because they assume a clocked architecture.
Since VPR does not support macro placement, we hand placed
several benchmarks so that they could use the fast south-
to-north carry chains. While we made no effort to equal-
ize branch mismatches or to minimize routes on token-ring
pipelines and other latency-critical channels, most of the
benchmarks performed within 75% of the FPGA’s maximum
throughput. In contrast, pipelined clock FPGAs require
substantial CAD support beyond the capabilities of generic
place and route tools to achieve such performance [19, 23].

Our asynchronous FPGA inherently supports bit-pipe-
lined datapaths that allow datapath bits to be computed
concurrently, whereas clocked FPGAs implement aligned
datapaths that compute all datapath bits together. How-
ever, due to bit-level data dependencies and aligned data-
path environments (e.g., memories or off-chip I/O) a bit-
pipelined datapath in an asynchronous FPGA will behave
in-between that of a fully concurrent bit-pipelined datapath
and a fully aligned datapath. To evaluate such a datap-
ath fairly, we measured the performance of a 16-bit adder
with a fully bit-pipelined environment and a fully aligned
environment. Since the fully aligned adder datapath will
exhibit data-dependent carry chain behavior, we reported
the best-case and worst-case throughputs in Table 1. In the
worst case, a fully aligned adder is 7% slower than a fully
bit-pipelined adder using fast carry chains and 47% slower
using slow carry chains.

8. RELATED WORK
Existing asynchronous FPGA architectures [5, 9, 12, 18]

have been based largely on programmable clocked circuits.
These FPGAs are limited to low-throughput logic applica-
tions because their asynchronous pipeline stages are either
built up from gate-level programmable cells (e.g., [5]) or

4Contains only the serial adders, LUT-based multipliers,
and scaling accumulator of the FIR filter [4].



Table 1: Benchmark statistics for automatically placed and routed asynchronous designs.
Proc- Proc./ Condi- Throughput (MHz)

Design LBs cesses LBs Function tional Copy 0.25µm 0.18µm

Arithmetic circuits
16-bit adder (bit-pipelined datapath) 16 16 1.0 100% 0% 0% 395 674
16-bit adder (aligned datapath) 16 16 1.0 100% 0% 0% 211/323 359/535
*16-bit adder (aligned datapath) 16 16 1.0 100% 0% 0% 369/377 641/651
4x4 array multiplier 36 36 1.0 78% 0% 22% 321 550
*4x4 array multiplier 21 21 1.0 62% 0% 38% 371 637
12x12 booth multiplier [2] 432 648 1.5 44% 0% 56% 395 674
8-bit scaling accumulator [4] 22 34 1.5 44% 21% 35% 352 607
*8-bit scaling accumulator [4] 15 24 1.6 50% 29% 21% 384 665

Signal processing circuits
8-tap symmetric 8-bit FIR filter core [4] 49 62 1.3 48% 11% 40% 354 599
*8-tap symmetric 8-bit FIR filter core [4] 42 56 1.3 55% 13% 32% 382 661
2-bit, 7-lag auto cross-correlator [6] 239 254 1.1 83% 0% 17% 363 626
1-D systolic convolution (4-bit, 8-stage) [10] 216 232 1.1 72% 0% 28% 346 578

Random logic circuits
MIPS R3000 write-back unit [17] 54 63 1.2 10% 60% 30% 346 658

*hand placed using fast south-to-north carry chains

use bundled-data pipelines (e.g., [18]). A fabricated asyn-
chronous FPGA chip using bundled-data pipelines operated
at a maximum of 20 MHz in a 0.35 µm CMOS process [9].
Another drawback of previously proposed asynchronous FP-
GAs is that they could not use generic synchronous FPGA
place and route tools. For example, the CAD tools for
the Montage FPGA architecture [5] needed to enforce the
isochronic fork delay assumption required for safe prototyp-
ing of QDI circuits.

The first asynchronous FPGA architectures (e.g., [5]) in-
cluded programmable arbiters, asynchronous circuits that
non-deterministically select between two competing non-syn-
chronized signals. However, arbiters occur very rarely in
slack-elastic systems because they can be used only when
they do not break the properties of slack elasticity [14].
For instance, an asynchronous MIPS R3000 microprocessor
used only two arbiters in its entire design [17]. Future work
for our asynchronous FPGA will consider replacing a small
number of conditional units with arbiter units.

While it is possible to perform limited prototyping of
asynchronous logic on commercial clocked FPGAs, the per-
formance and logic density costs are large. For example, an
unpipelined 1-bit QDI full-adder requires ten 4-input LUT
cells [7] and six additional 4-input LUT cells to pipeline its
outputs. Since this adder is inefficiently pipelined and can-
not take advantage of built-in carry chains, it will operate
slower than both a clocked adder and an adder implemented
in our asynchronous pipelined FPGA. In addition, the cir-
cuit area of prototyping an asynchronous adder in a clocked
FPGA is 16 times worse than a clocked adder and 8 times
worse than an adder in our asynchronous FPGA.

An alternative method for prototyping clocked logic is to
map a clocked netlist onto asynchronous blocks, such that
the resulting asynchronous system implements the same log-
ical behavior as if it were a clocked system. While we be-
lieve this method is less than ideal because clocked logic
does not behave like asynchronous logic and need not ef-
ficiently map to asynchronous circuits, previous work has
designed pipelined asynchronous FPGA cells that support

this feature [8, 22]. However, these FPGA designs used un-
pipelined interconnects and did not demonstrate significant
performance advantages over clocked FPGAs.

9. FUTURE WORK
QDI asynchronous circuits are very conservative circuits

in terms of delay assumptions and in that regard the results
presented in this paper are the “worst” performance we can
achieve with asynchronous FPGA circuits. If we use more
aggressive circuit techniques that rely on delay assumptions,
then it is feasible to design faster and smaller asynchronous
FPGAs, at the cost of decreased circuit robustness.

In this paper we explored only a small realm of possi-
ble asynchronous FPGA architectures, that of an island-
style FPGA with a non-segmented pipelined interconnect. A
segmented interconnect, where routing channels span more
than one logic block, or a hierarchical interconnect (e.g., a
tree structure) could be used to help reduce pipeline latency
on long channel routes. In addition, advanced hardware
structures found in commercial FPGAs (e.g., cascade chains,
LUT-based RAM, etc.) could be added to our asynchronous
FPGA to improve performance and logic density.

While we concentrated on designing a bit-level FPGA us-
ing dual-rail channels, asynchronous logic may be more area
efficient and energy efficient for multi-bit programmable dat-
apaths. These datapaths consist of small N-bit ALUs, which
are interconnected by N-bit wide channels that use more effi-
cient 1ofN data encodings. For example, a 1of4 channel will
use one less wire than two dual-rail channels and consume
half as much interconnect switching energy.

10. SUMMARY
We described a finely pipelined asynchronous FPGA ar-

chitecture that we believe is the highest performing asyn-
chronous FPGA by an order-of-magnitude. This asynchro-
nous FPGA architecture distinguishes itself from that of a
clocked one by its ease of pipelining, its event-driven energy
consumption, and its automatic adaptation to delay varia-
tions. We showed that asynchronous logic can transparently



use a pipelined interconnect without needing retiming regis-
ters and demonstrated that benchmark circuits achieve good
performance using synchronous place and route CAD tools.
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APPENDIX

A. PROGRAMMABLE CIRCUITS
Figure 16 shows the circuit details for a programmable

C-element (pC), which consists of a standard C-element
augmented by a configurable pull-down stack that allows a
and/or b to be ignored when pC is part of a completion tree.
The environment is responsible for driving unused inputs to
ground (e.g., see completion trees in Figure 9).
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Figure 16: Programmable C-element.

Figure 17 shows the circuit details for an unpipelined pro-
grammable copy stage that can be configured to copy input
tokens to one or both of its output channels.
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Figure 17: Unpipelined token copy.
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