
Fault Tolerant Asynchronous Adder through Dynamic

Self-reconfiguration

Song Peng and Rajit Manohar

Computer Systems Laboratory

Cornell University

Ithaca, NY 14853, USA

{speng,rajit}@csl.cornell.edu

Abstract

This paper presents a systematic method for the
design of a reconfigurable self-healing asynchronous
adder. We propose a graph-based model for the design
of a fault-tolerant linear array with external inputs and
outputs with a minimum number of spare resources.
A K-fault-tolerant asynchronous adder design is pre-
sented based on this analysis, together with the nec-
essary support logic for dynamic self-reconfiguration.
Experimental evaluations show that our method incurs
both low hardware cost and small performance overhead
compared to traditional approaches to fault-tolerance.

1 Introduction

The continuous advances of microelectronics leads
to substantial reduction in both transistor dimensions
and power supply voltages, which makes circuit become
faster and consume less active power. However, the
shrinking transistor size makes the circuit more sensi-
tive to defects in fabrication processes such as contam-
inants [12]. Smaller device size coupled with increased
power densities also becomes threatening the nearly
unlimited lifetime reliability standards that customers
have come to expect, leading the onset of significant
lifetime reliability problems [7]. Thus, hard-error tol-
erant designs, which improve both fabrication yield and
lifetime reliability, are becoming an important issue in
modern VLSI systems.

With higher clock frequency, decreased feature sizes
and increased transistor counts, clock distribution and
wire delays present a growing challenge to the design-
ers of singly-clocked, globally synchronous systems. It
is becoming more and more difficult and expensive to
distribute a global clock singal with low skew through-

out a processor die. On the other hand, asynchronous
circuits do not suffer such problem since they do not
have a global clock. This fact forces industrial re-
searchers to eventually abandom singly-clocked glob-
ally synchronous systems in favor of asynchrony [6].
Therefore, asynchronous design is expected to be a
popular topic in future microprocessors.

One important class of asynchronous circuits, which
we consider in this paper, is quasi delay-insensitive
(QDI) circuits. They are an interconnection of logic
gates without any clock signal for sequencing, and op-
erate correctly regardless of gate delays [17]. A QDI
system is constructed as a collection of concurrent
hardware modules (called processes) that communi-
cate with each other through message-passing channels.
These messages consist of atomic data items called to-
kens, which are usually multi-rail encoded [17]. Each
process can send and receive tokens to and from other
processes through one-to-one communication by means
of handshake protocols [17]. Due to the lack of global
clock and multi-rail encoded data communication, QDI
circuits have potential to achieve self-checking and halt
the circuit in presence of failures [3, 5].

Although there is wealth of research on fault tol-
erant clocked logic designs, little attention has been
paid to asynchronous circuits. The absense of clock
signals means that a faulty asynchronous circuit might
exhibit problems that would not normally arise in a
clocked logic, which makes competent fault tolerant
techniques for synchronous systems ineffective or in-
efficient [3]. Thus, new methods have to be explored
to achieve fault tolerance in asynchronous circuits.

To reduce design complexity, a systematic way to
build a fault tolerant system, and in particular, a fault
tolerant asynchronous system, is to make each com-
ponents fault tolerant. The design of a fault tolerant
datapath is an important step in constructing a fault

1

tolerant microprocessor. Many datapath blocks such
as adders, shifters, etc, can be modeled as a linear ar-
ray or a collection of linear arrays, given that either
data or control propagates linearly through them. The
design of a self-healing adder shows a typical example
to achieve fault tolerance in such blocks, and provides
the basis for building a fault tolerant datapath.

The goal of this paper is to exploit inherent fail-
stop behavior in asynchronous circuits to construct a
self-healing adder with both small hardware cost and
performance overhead in a systematic way, and thus
take an important step toward the design of a fault
tolerant asynchronous processor.

Two metrics are commonly used to evaluate a fault
tolerant system, hardware overhead and performance
overhead. Since it is often difficult to reduce both over-
heads in reality, designers often trade off one metric
with the other [11, 15]. The most widely used approach
to achieving fault tolerance is hardwired duplication
such as NMR [18]. However, power, area and yield
pressures cause less scope for full duplications today [1].
Another approach is to introduce reconfiguration over-
head but less hardware redundancy to maintain func-
tionality in presence of failures. This approach can be
conveniently described as a graph problem [14]. Sup-
pose a graph G respresents the topology of a multipro-
cessor system, an interconnection network, or a VLSI
circuit. We say another graph G′ is a K-fault-tolerant
(K-FT) graph of the target graph G if G is isomorphic
to a subgraph of the graph derived by deleting any K
nodes and all their incident edges from G′. Since every
edge fault is a part of some node fault, G′ can tolerate
both node faults and edge faults. In the remaining of
this paper, we mean node fault tolerant wherever we
say fault tolerant.

In this paper, we propose a near-optimal graph
model for K -fault tolerant linear array with external
inputs and outputs (called open linear array), and
examine the case with a minimum number of spare
resources (Section 2). Based on this graph model,
we present a systematic method to design a self-
healing asynchronous adder: a K -fault tolerant open
linear array with the support logic for dynamic self-
reconfiguration (Section 3). By utilizing fail-stop po-
tential of asynchronous logic, we show that this pro-
posed design method achieves small hardware cost,
high performance and low power consumption com-
pared to hardwired duplication approaches such as
NMR [18], TSTMR [15], QTR [11], etc (Section 4).
Meanwhile, we analyze the relationship between re-
configuration complexity and spare resource cost, and
show how to reduce total hardware overhead by choos-
ing an appropriate linear array size. Section 5 reviews

the related work, and Section 6 draws the conclusions.

2 Fault Tolerant Open Linear Arrays

A module that is part of a larger system has a set
of internal components V which are connected to each
other, as well as connections to a set of external com-
ponents Ve. The graph of interest when analyzing the
module contains internal edges from V ×V , and exter-
nal edges from (V ×Ve)∪(Ve×V). We say that a graph
G = (V ∪ Ve, E) is closed if E ⊆ V × V ; otherwise, the
graph is said to be open.

What makes the construction of a fault-tolerant
model for a open graph challenging is the fact that
external inputs to the graph are not interchangeable.
This makes nodes in a open graph heterogeneous.
There is a wealth of research on fault tolerant graph
models for closed linear arrays [9, 13, 14, 19, 20]. How-
ever, a direct application of these results requires en-
suring that every external vertex Ve has an edge to
every internal node.

We proposed two solutions to this problem that min-
imize the amount of replication required for external
edges in [2]. This section briefly describes one solu-
tion with a minimum number of spare nodes, as the
self-healing asynchronous adder in this paper is built
on this graph model. More details can be found in [2].
For the remainder of this section, we use the term linear
array to mean a open directed linear array.

Let u1, u2, . . ., uN be the internal nodes in the linear
array, and let e1, . . ., eN be the external nodes. The
edges are of the form (ui, ui+1) for 1 ≤ i < N and
(ei, ui) for 1 ≤ i ≤ N . For the graph to be K-FT,
there must be at least K spare nodes. We name these
nodes uN+1, . . ., uN+K . Also, If a node in the array ui

connects to an external node v, this connection must
be replicated to at least K other distinct nodes ui1 , ui2 ,
. . ., uiK

that differ from ui; otherwise the graph will not
be K-FT. Next we consider the internal edges in the
linear array, assuming that we have a minimum number
of spares as well as minimum external edge replication.
For simplicity in what follows, we only focus on the
internal edges, and we assume that N ≥ 2.

We define a tail candidate to be any node that can
be at the end of the linear array after K nodes are
removed; a node that can never be at the end of the
array is a non-tail candidate. Note that since a min-
imum number of external edges are introduced, there
must be exactly K + 1 tail candidates.

Let PN,K be a K-fault tolerant open linear array
with minimum spares and external edges. Let PN is
the target array.

Any non-tail candidate of PN,K can’t be at the end

2

of remaining linear array after any K nodes are re-
moved. In other words, there must be an outgoing
edge from that node after removing any other K nodes.
Thus, the out-degree of each non-tail candidate of PN,K

is at least K +1. Moreover, at most one tail candidate
can have zero out degree. Otherwise, no linear array
can be found in the remaining graph after removing all
the tail candidates with outgoing edges. Therefore, we
can conclude that an optimal K-FT open linear array
with minimum spares and external edges must have
(N − 1) × (K + 1) + Ω(K) internal edges.

We can construct a K-FT graph PN,K based on the
linear array as follows. (i) K spare nodes uN+1, . . .,
uN+K are introduced; (ii) External edges are added.
For 1 ≤ i ≤ N , we introduce replicas (ei, ui+1), . . .,
(ei, ui+K) of edge (ei, ui); (iii) Internal edges are added.
For each node ui (i < N), K replicas (ui, ui+2), . . .,
(ui, ui+K+1) of edge (ui, ui+1) are introduced. Finally
for each node ui (N ≤ i < N + K), N + k − i edges
from ui to ui+1, . . ., uN+K are introduced. The proof
that PN,K is K-fault tolerant can be found in [2].

PN,K has a minimum number of spares, as well as
minimum external edges. The number of internal edges
is (N −1)× (K +1)+K× (K +1)/2. Since K ≪ N for
most real fault-tolerant designs, in practice we should
have a number of internal edges that is very close to the
loose lower bound. Moreover, the construction PN,K

can be applied to general open linear arrays, where each
node in PN,K represents a subgraph, and the external
edges can correspond to possibly replicated external
input and/or outputs.

As an example, Figure 1 shows the construction for
P4,2. In P4,2, 2 spare nodes (shaded), 8 external edges
(bold), and 9 internal edges (bold) are added in order
to tolerate any 2 node faults.

3 Self-healing Asynchronous Adder

Design

In this section, we present the design of a self-healing
asynchronous adder with respect to any K faults, using
the construction outlined in Section 2. A block diagram
of the self-healing adder is shown in Figure 3. It is com-
posed of a fail-stop asynchronous adder, combined with
deadlock detection and online reconfiguration logic.

The asynchronous adder is built based on the K-
fault tolerant linear array in Section 2 and extra logic
is added to achieve fail-stop. When the adder stops
in presence of failure (due to fail-stop logic), the dead-
lock detection circuit captures the deadlock and ac-
tivates online reconfiguration logic. Reconfiguration
logic then exhaustively tries different reconfigurations
until it finds a workable one. In order to achieve self-

 e4 u4

e3 u3

e2 u2

u1e1

u6

u5

e4 u4

e3 u3

u2

u1

e2

e1

Figure 1. Fault tolerant array construction ex-
ample.

Asynchronous Adder

Reconfiguration
 Logic

Deadlock
Detection

Failure−stop

Figure 2. Block diagram of reconfigurable
self-healing asynchronous adder

healing, the reconfiguration logic and deadlock detec-
tion circuits have to be fault free.

Fault Model. We investigate single stuck-at fault
(SSAF) in a 1-bit adder cell and thus multiple stuck-
at faults are allowed in an N-bit adder. According to
stuck-at fault model, a circuit line is stucked-at one or
zero if it is disconnected from any other circuits’ wires
and connected to the power supply or ground respec-
tively. Although stuck-at fault model is simple and is
not accurate to represent all possible fault cases, it can
cover most real fabrication defects [1] and is effective
for modeling many other permanent faults and unre-
coverable failures [4]. Thus, a stuck-at-fault-tolerant
system has the potential to achieve high reliablity.

3

Implementing Fail-Stop Behavior. Because asyn-
chronous circuits use multi-rail encoding to represent
data bits and use handshake prtocols to communicate
data between different processes, those circuits have
the potential capability of self-checking [3, 5].

For high performance and reasonable transistor
count, a 1-bit QDI adder cell is usually implemented
in terms of precharge half-buffer (PCHB) template [16]
(shown as Figure 3). In this template, each variable
X is dual-rail encoded (Xf , Xt) with an active-low
acknowledge (Xe). Validity and neutrality of the in-
puts and the output are checked (NOR gates) and syn-
chronized (C-element) in Figure 3(a), generating corre-
sponding enable signal en and input acknowledge Le.
Data output is computed or reset in Figure 3(b), de-
pending on the enable signal en and output acknowl-
edge Re

o. Details about the handshake sequence by
PCHB circuit can be found in [16].

 Le/en...

Rf
o

Rt
o

Lt
n

Lf
n

Lt
1

Lf
1

Lt
0

Lf
0

C

(a)

 Lf
i Lt

iff
o f t

o

en

Re
o

en

Re
o

Rt
oRf

o

(b)

Figure 3. Template of precharge half buffer.

Because handshake completion relies on both up and
down transitions on all signals in Figure 3(a) and data
computation is decided by input data rails to pull-down
stacks, it can be proved that any failure by single stuch-
at fault in the PCHB circuit either deadlocks the circuit
or throws an illegal encoded output (Rf

oRt
o=’11’) [5].

By checking each output channel and blocking the out-
put acknowledge in presence of any illegal data token,
we can easily make the circuit also deadlock if any
illegal data token is generated from current process.
Therefore, an N-bit adder in terms of PCHB circuits
can achieve fail-stop with respect to stuck-at fault(s)
as long as single stuck-at fault in a 1-bit cell.

Deadlock Detection. System deadlock is recog-
nized by a deadlock detector, which monitors channel
activity. The deadlock detector works in the follow-
ing way. At any time, if a transition occurs on the
data channel, a timer is started (implemented as a de-

lay line [10]). The deadlock detector waits for the next
valid protocol state to occur. If it does not occur for
a large amount of time, it assumes that the circuit has
deadlocked. Note that there are some states where the
circuit can wait for its environment. In these states, a
timer is not set.

Reconfiguration. The reconfiguration logic is ac-
tivated by the deadlock detector, and reconfigures the
asynchronous adder to a different configuration so that
faulty nodes won’t be used any longer. The fail-
stop asynchronous adder has to be changed in order
to achieve self-healing with respect to any K faults
through online reconfiguration. (i) K spare nodes are
added to the adder and the whole N -bit adder topol-
ogy is a fault tolerant linear array of Section 2, where
each node is a C-bit adder cell (C ≤ N). Each exter-
nal edge represents the non-carry channels of the adder
cell, and each internal edge represents carry propaga-
tion channels between adjacent adder cells. (ii) In order
to achieve dynamic reconfiguration, there is a pass-gate
on the wires for each edge, whose control input comes
from external reconfiguration logic.

Generally speaking, there are two methods to
achieve such reconfiguration. One is to locate faults
and use a new configuration which excludes those
faulty nodes directly. Although such a system is fast in
terms of fault recovery time, fault location is compli-
cated because non-faulty nodes will be also deadlocked
by faulty nodes, resulting in complex location logic and
large hardware overhead. Another possibility is to let
the reconfiguration logic try all possible configurations
until it finds a workable one. Although this will prolong
fault recovery time, we save the fault location logic and
the total hardware overhead can be actually reduced.
Also, because fault rarely occurs, longer fault recov-
ery time has little impact to system performance. For
the purpose of this paper, we used this approach with
a self-incrementer used as a state machine and with
configuration outputs derived from the value of the in-
crementer. The block diagram of reconfiguration logic
is shown in Figure 4.

Watched adder channel

Self Incrementer

Reset LogicCombinational Logic Network

Reset

Deadlock
Detector

Controls to pass gates on reconfigurable
channels of the adder

Figure 4. Reconfiguration logic diagram.

4

The system reconfiguration is achieved as follows.
Whenever the adder deadlocks, the deadlock detec-
tor activates the self-incrementer by starting the hand-
shake, and the latter increments itself and changes to
the next state. The combintaional logic network is
used to set the configuration outputs according to cur-
rent incrementer output. Consequently, all pass-gate
controls are updated accordingly, setting up new con-
nections. Meanwhile, the incrementer also generates a
local reset signal through reset logic (timing assump-
tions have to be made in reset stage for reset signal
propagation), which re-initializes the adder to restart
the handsking and resets the deadlock detector, mak-
ing the system ready for re-issued computation. The
above procedure repeats if the system deadlocks again,
and another different configuration will be picked up.

There are
(

N+K

K

)

possible configurations for a K-
FT N -node array, corresponding to the possible fault
locations. Thus, the incrementer output needs M =
⌈log2

(

N+K

K

)

⌉ bits (when K ≪ N , M ≃ Klog2N).
Since each state of self-incrementer represents a choice
of K nodes, the Boolean equation for each configura-
tion output can be derived directly from the remain-
ing graph after removing those K faulty nodes. A
number of logic terms are shared between the Boolean
equations of different configuration outputs so that the
configuration logic can be further simplified by reusing
common subexpressions.

4 Evaluation

We evaluate the self-healing asynchronous adder in
terms of hardware cost, performance and power con-
sumption, and compare this design method with tra-
ditional methods to achieve fault tolerance, like NMR,
TSTMR [15], etc. We use M to denote the number of
nodes in the original adder, K to denote the number
of faults to be tolerated, C to denote the bit-width of
the adder cell represented by each node, and the adder
is N -bit wide, where N = M × C.

4.1 Hardware overhead

The cost of a circuit in terms of the amount of hard-
ware necessary is estimated by its transistor count. We
define hardware overhead to be 100%× (Cft −Co)/Co,
where Co is the hardware cost of the baseline adder, Cft

is the hardware cost of the self-healing adder, which in-
cludes spare resources and reconfiguration logic.

The increased cost of a self-healing adder is due to
the additional complexity of the implementation de-
scribed in Section 3. While the complexity of the
adder core can be estimated easily from the arguments

in Section 2, it is harder to describe the transistor
count required for the reconfiguration logic in analyti-
cal terms. We wrote a program to automate the design
of combinational logic part of the reconfiguration logic.
The program performs Boolean expression simplifica-
tion for each configuration bit, attempting to share
terms across all the outputs to reduce hardware cost.
The program also ensures that no term in the logic ex-
pression requires more than four transistors in series
for its implementation so that it can be easily imple-
mented in CMOS without further gate decomposition.

We analyzed 8-bit, 16-bit, 32-bit and 64-bit adders
that are 1-FT, 2-FT, 3-FT and 4-FT with nodes of 1-
bit, 2-bit, ..., (N/2)-bits respectively. The correspond-
ing hardware overheads are shown in Figure 5.

From Figure 5, we can draw several conclusions.
First, hardware overhead can be reduced dramatically
if the appropriate node size is chosen. Generally speak-
ing, given an adder size N, larger node size C saves
more hardware overhead when K increases, because
the simplied graph due to less number of nodes, re-
sults in simpler configuration logic. Second, given the
number of nodes M, larger adder size N results in less
hardware overhead, because the hardware cost of re-
configuration logic becomes less compared with base-
line adder. As the number of configuration bits grows
(especially in the case of a 1-bit node), the complexity
of the adder core itself is dwarfed by the reconfigura-
tion logic.

The minimum hardware overheads of different node
sizes from Figure 5 are summarized in Table 1. The
overhead is reported as a percentage, with the associ-
ated node size reported in parentheses. ’x-FT’ refers
to self-healing adder with respect to x faults.

Size 1-FT 2-FT 3-FT 4-FT

8-bit 128% 212% 307% 387%
(4-bit) (4-bit) (4-bit) (4-bit)

16-bit 102% 171% 258% 326%
(4-bit) (4-bit) (8-bit) (8-bit)

32-bit 87% 140% 211% 296%
(8-bit) (8-bit) (8-bit) (16-bit)

64-bit 74% 124% 178% 245%
(8-bit) (16-bit) (16-bit) (16-bit)

Table 1. Minimum hardware overheads of self-
healing adders.

Let SN,K be the node size to achieve minimum hard-
ware cost given the N and K. As mentioned before,
the increased node size simplfies the fault tolerant lin-
ear array model, resulting in simplified reconfiguration

5

32−bit node

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70

H
ar

dw
ar

e
O

ve
rh

ea
d

(%
)

Adder Size (bits)

1−bit node
2−bit node
4−bit node
8−bit node

16−bit node

 60

(a) Hardware overhead of 1-fault self-healing adder

32−bit node
 1000

 10

H
ar

dw
ar

e
O

ve
rh

ea
d

(%
)

Adder Size (bits)

1−bit node
2−bit node
4−bit node
8−bit node

16−bit node

 100

(b) Hardware overhead of 2-fault self-healing adder

32−bit node

 1000

 10000

 100000

 10

H
ar

dw
ar

e
O

ve
rh

ea
d

(%
)

Adder Size (bits)

1−bit node
2−bit node
4−bit node
8−bit node

16−bit node

 100

(c) Hardware overhead of 3-fault self-healing adder

32−bit node

 1000

 10000

 100000

 1e+06

 10

H
ar

dw
ar

e
O

ve
rh

ea
d

(%
)

Adder Size (bits)

1−bit node
2−bit node
4−bit node
8−bit node

16−bit node

 100

(d) Hardware overhead of 4-fault self-healing adder

Figure 5. Fault tolerance hardware overhead analysis.

logic overhead. Thus, SN,K increases when N or K
increases. On the other hand, increased node size in-
creases the hardware cost for spares. Consequently,
given K, the ratio of optimal node size to adder size,
SN,K/N decreases with larger N so that the increase
of hardware cost for spares can be covered by the re-
duction in reconfiguration logic.

Compared with the traditional NMR method where
entities are simply replicated, whose hardware over-
head is at least 2K × 100%, our design has much lower
hardware overhead even when the reconfiguration logic
is accounted for. Table 2 shows the hardware overhead
if the fault tolerant asynchronous adder is implemented
using triple modular redundancy (TMR) 1.

The hardware overhead of this fault tolerant design
is even comparable to the time redundancy method

1To apply TMR to QDI circuits is non-trival: timers as well
as non-negligible self-reconfiguration logic has to be added to
voter. We omit those components and only investigate voter
core here so that the reported hardware cost, performance and
power consumption are optimistic.

Size 8-bit 16-bit 32-bit 64-bit

TMR 323% 315% 311% 309%
TSTMR 115% 99% 76% 72%

Table 2. Hardware overhead of TMR, TSTMR
(synchronous).

such as TSTMR in synchronous system, whose hard-
ware overhead is reported in [11] and shown in Table 2.
Note that this assumes that the clock network is func-
tional, and applying this technique to asynchronous
circuits will require additional overhead that is not re-
ported in Table 2.

4.2 Performance overhead

The reconfiguration logic and spares in our design
are not on the critical path, the performance doesn’t
depend strongly on K. We used HSPICE to simu-

6

late the fault tolerant adders with all configurations
shown in Table 1, and compared the throughputs with
corresponding baseline adder and TMR adder, which
is shown in Figure 6. The HSPICE simulation uses
TSMC 0.18um technology at 25◦C.

1−FT adder

 20

 40

 60

 80

 100

64/1664/832/1632/816/816/48/4

R
el

at
iv

e
th

ro
ug

hp
ut

 (
%

)

baseline
TMR

 0

Figure 6. Comparison of throughputs

In Figure 6, X/Y refers to X -bit adder with Y -bit
node. The performance degradation in this fault toler-
ant design is no more than 20%: the throughput is even
a little higher than the TMR approach, and much bet-
ter than TSTMR [15] and QTR [11] approaches, which
reduces performance by a factor of 3 and 4 respectively.
Note that the throughput of NMR will become much
worse if K increases, because the majority voter logic
becomes much more complicated and further limits the
throughput. However, this situation does not arise in
our reconfigurable fault tolerant design due to the fact
that no extra logic other than a reconfigurable acknowl-
edge circuit stays on the critical path. Thus, given a
N, the performance overhead will not increase signifi-
cantly when K changes.

4.3 Power overhead

Power consumption of a circuit can be divided into
two parts: static power consumption and dynamic
power consumption. A simple estimate of the static
power can be obtained from the transistor count. From
Table 1, the static power overhead of reconfigurable
fault tolerant design is much less than that of the NMR
approach and comparable to that of TSTMR.

Dynamic power consumption accounts for the ma-
jority of total power consumption today. Because there
is no switching activity in both reconfiguration logic
and spare hardware, the dynamic power overheads of
this recofigurable adder only comes from the augmen-
tation pass-gates. We used HSPICE (using TSMC
0.18um technology at 25◦C) to simulate the fault tol-
erant adders with all configurations shown in Table 1

and compared the dynamic power consumption with
the baseline adders and TMR adder. The results are
shown in Figure 7.

1−FT adder

 50

 100

 150

 200

 250

 300

 350

64/1664/832/1632/816/816/48/4

R
el

at
iv

e
po

w
er

 c
on

su
m

pt
io

n
(%

)

baseline
TMR

 0

Figure 7. Comparison of power overheads

Because all replicas and voters are working all the
time, the TMR approach incurs a large power over-
head. However, the major power overhead of the pro-
posed design comes from the pass-gates and the extra
power consumption is small (less than 20%).

4.4 Fault recovery time

Fault recovery time is decided by the number of
configurations the system has tried before it finds a
workable one. It takes system τd before it decides that
current configuration doesn’t work and switches to an-
other, where τd is the deadlock detection time. There-
fore, the worst fault recovery time is that system has
tried all possible configurations and finds the last one
workable, which is

(

N+K
K

)

× τd. Normally, τd is several
microseconds, resulting in a fault recovery time on the
order of tens to hundreds of microseconds for low val-
ues of K. This time can be acceptable in practice as
the time required by the system to reconfigure itself to
handle failures.

5 Related Work

There is a wealth of research on graph-theoretical
approach to fault tolerance through reconfiguration.
Hayes [14] introduced the concept of K -FT graphs and
proposed optimal K -FT graphs for linear array and
circle. Alon et al. [9] constructed fault tolerant graphs
for (undirected) linear arrays in a more general way.
Ajtai et al. [8] presented a universal method based
on probabilistic arguments for arbitrary fault tolerant
graph. Haray et al. [13] discussed the design of opti-
mal K -edge fault tolerant graphs of paths, circles and
n-dimensional hypercube. Zhang [20] proposed a new

7

fault tolerant linear array to trade off maximum node
degree with more spares, and a better construction was
subsequently developed by Yamada et.al [19]. How-
ever, the graphs studied in the aforementioned work
are closed. In other words, there is no external in-
put or output with respect to the graph, because those
graphs were used to model interconnection networks of
parallel machines. Thus, the results cannot be applied
to non-closed graphs without any change.

Substantial work has also been done on fault toler-
ant designs. A commonly-used method is N-modular
redudancy (NMR), which was proposed by Von Neu-
mann [18]. In order to tolerate K faults, 2K+1 replicas
are added and a majority voter is used to determine
the final result. This approach becomes complicated
and causes significant slowdown with increased K. In
order to reduce the hardware overhead, The authors
in [11, 15] used time redundancy to achieve 1-fault tol-
erance by trading off hardware cost for performance
overhead. For example, QTR method in [11] reduces
the extra hardware cost down to 32% while reducing
performance by a factor of 4. However, none of these
methods is able to achieve fault tolerance with both
low hardware cost and small performance overhead.

6 Conclusion

In this paper, we proposed a graph model for fault
tolerant open linear array, and presented a system-
atic method of reconfigurable self-healing asynchronous
adder design based on that model, with respect to
stuck-at faults. We analyzed the relationship between
reconfiguration complexity and spare resource cost in-
curred by different linear array size, and showed how
to reduce total hardware overhead by choosing a rea-
sonable linear array size. Due to the inherent fail-stop
property of asynchronous system, this reconfigurable
fault tolerant design can achieve much lower hardware
overhead compared with traditional NMR method and
is even competitive with time redundancy method in
synchronous logic. By keeping most of self-healing
related logic away from the critical path, this recon-
figurable design achieves small constant performance
overhead, and consumes much less power compared
with NMR. The key philosophy behind this design is
to make self-healing system cost-effective by trading off
prominent terms (hardware, etc) with less impactive
terms (fault recovery time). Finally, this self-healing
design method can also be applied to synchronous cir-
cuits, as long as failure detection logic is added.

References

[1] International Technology Roadmap for Semiconduc-

tors. Semiconductor Industry Association, 2004.

[2] S. Peng et al. Explicit constructions of fault-tolerant
open linear arrays. Technical Report CSL-TR-2005-
1044, Cornell University, 2005.

[3] C. LaFrieda et.al. Robust fault detection and toler-
ance in quasi delay-insensitive circuits. In Proc. Inter-

national Conference on Dependable Systems and Net-

works, 2004.

[4] E. J. McCluskey et.al. Stuck-fault tests vs. actual de-
fects. In Proc. International Test Conference, 2000.

[5] I. David et.al. Self-timed is self-checking. J. of Elec-

tronic Testing: Theory and Applications, 6(2), 1995.

[6] I. E. Sutherland et.al. Computers without clocks. Sci-

entific American, 2002.

[7] J. Srinivasan et.al. The case for lifetime reliability-
aware microprocessors. In Proc. the 31st Annual Inter-

national Symposium on Computer Architecture, 2004.

[8] M. Ajtai et.al. Fault tolerant graphs, perfect hash func-
tions and disjoint paths. In Proc. IEEE Symposium on

Foundations of Computer Science, 1992.

[9] N. Alon et.al. Explicit construction of linear sized tol-
erant networks. Discrete Math, 72(1):15–19, 1988.

[10] N. R. Mahapatra et.al. Comparison and analysis of
delay elements. In Proc. the 45th Midwest Symposium

on Circuits and Systems, 2002.

[11] W. J. Townsend et.al. Quadruple time redundancy
adders. In Proc. IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems, 2003.

[12] W. Kuo et.al. An overview of manufacturing yield
and reliability modeling for semiconductor products.
Proceedings of the IEEE, 87(8), 1999.

[13] F. Haray and J. P. Hayes. Edge fault tolerance in
graphs. Networks, 23:135–142, 1993.

[14] J. P. Hayes. A graph model for fault-tolerant comput-
ing systems. IEEE Trans. on Computers, 25(9), 1976.

[15] Y. M. Hsu. Concurrent Error Correcting Arithmetic

Processors. PhD thesis, The University of Texas,
Austin, August 1995.

[16] A. M. Lines. Pipelined asynchronous circuits. Master’s
thesis, California Institute of Technology, 1995.

[17] A. J. Martin. Synthesis of asynchronous VLSI circuits.
Technical Report CS-TR-93-28, California Institute of
Technology, 1993.

[18] V. Neumann. Probabilistic logics and the synthesis
of reliable organisms from unreliable components. In
C. E. Shannon and J. McCarthy, editors, Automata

Studies. Princeton University Press, 1956.

[19] T. Yamada and S. Ueno. Optimal fault-tolerant linear
arrays. In Proc. ACM Symposium on Parallelism in

Algorithms and Architectures, 2003.

8

[20] L. Zhang. Fault tolerant networks with small degree.
In Proc. ACM Symposium on Parallelism in Algo-

rithms and Architectures, 2000.

9

