
Removing Concurrency for Rapid Functional Verification
Stephen Longfield, Jr., Rajit Manohar

School of Electrical and Computer Engineering
Cornell University, Ithaca, NY, 14853, U.S.A.

{slongfield, rajit}@csl.cornell.edu

Abstract—VLSI systems are commonly specified using sequential exe-
cutable functional specifications, but implemented in a highly concurrent
manner. Alhough the methods to transform between the sequential
specification and concurrent implementation have been well-studied,
there are still substantial difficulties in verifying that the concurrent
implementation corresponds to the sequential specification after low-
level optimization. The majority of methods for doing this verification
have focused on strong semantic models for reasoning about systems and
their specifications, but these models can add significant unnecessary
complexity. In this paper, we explore a weak but effective method for
reasoning about implementation relations. We show how a sequential
embedding of a concurrent program can be generated, and how that
embedding can be used to dramatically reduce the reachable state space
of the verification problem while maintaining the semantic model of
interest.

I. INTRODUCTION

Verifying that VLSI circuits operate as specified is an important
area of research due to the high cost of failure in chip design
and the complexity of these verification problems. A recent study
determined that, as of 2012, more time was spent in the verification
of VLSI systems than in their design, and that the complexity of these
problems was growing at a double-exponential rate with an increase
in the number of devices on chip [1].

Much of the existing work has focused on improving the scalability
of state-based methods, or on ease of application of theorem proving
based methods. In this paper, we focus on a semantic model of
concurrent systems, behaviors, and show how properties of this model
can be leveraged to dramatically reduce the size of the functional
verification problem. In particular, we show how to generate a
sequential embedding of the concurrent implementation which has
the same behavior set.

We will be focusing on verifying the projection design style [2] in
which a sequential specification is tranformed into several smaller,
concurrent programs, operating on disjoint parts of the original
task. This allows the designer to introduce pipelining and other
forms of concurrency while maintaining an exact correspondence to
the original specification. This style was originally introduced for
reasoning about high-performance VLSI systems, but here we show
how properties of the behaviors produced by projection can simplify
verification.

Projection has found a significant foothold in the self-timed VLSI
community, where it has been used to design many systems, from
high performance MIPS microprocessors [3] and FPGAs [4] to
portions of a low power GPS baseband processor [5], while providing
the theory for the CAD tool Proteus [6], the static token synthesis
technique [7], and dataflow synthesis for FPGAs [8].

One limitation of projection is that if optimizations are made
after the specification has been transformed into the concurrent
representation, the method to augment the original specification in a
way that permits these optimizations may be non-obvious. Typically
checking that these optimizations do not violate the specification
requires expensive state-space verification. Using the method we
present, this check consists of comparing the externally observable

behavior of two finite-state sequential programs, a much simpler
problem. We have created a software implementation of our method,
and have found it to be applicable to real-world systems. In addition,
we created a method for verifying that the sequential embedding
is a valid representation of the original program. The embedding
verification algorithm is substantially simpler than the embedding
algorithm, meaning the trusted code base can be small.

II. RELATED WORK

A. Concurrent semantic models

When verifying the functionality of concurrent systems, it is
important to carefully consider the semantic model used for reasoning
about that system. A model which is too strong may classify
interchangeable systems as distinct, while a model that is too weak
may not provide the mechanisms needed to reason about certain prop-
erties. For instance, semantic models that do not distinguish between
deadlocking and and successful completion make it impossible to
reason about these separately.

A classic model for reasoning about concurrent systems is to
model the system and its specification as labeled transition systems,
and to check if these models can simulate each other, a method
known as bisimulation [9]. This method is very strong, and will
distinguish between systems which may have the same observable
behavior, but different internal causality. It can be weakened by hiding
“internal” transitions; however, it is still a very strong relation, and
may distinguish between two otherwise interchangeable systems.

Trace theory is a reasoning method that has been found to avoid
some of the problems of bisimulation, particularly when applied to
VLSI systems [10]. In this semantic model, the system is modeled
as a set of sequences of atomic actions, where each element of the
set represents a possible execution of the system. This allows for
dramatically different implementations to be compared. However, it
commonly suffers from the state explosion problem, where increasing
the number of processes exponentially increases the size of the trace
set, making it difficult to apply this method to large systems.

A possible weakening of trace theory is to use partially ordered
events [11]. Using this method, only events which can affect each
other are given ordering relations, and no representation is built for
the sequencing behavior of independent events. This restricts any
analyses that use this semantic model to only reason about actual
dependencies, which may dramatically improve the runtime of the
analysis. The main downside of this method is that they often require
significant processing to identify independent events.

B. Verification of concurrent systems

One of the most successful methods for verifying finite state
concurrent systems has been model checking [12]. In this method,
safety and liveness properties are encoded in a logic language (typ-
ically computation tree logic or linear temporal logic), and checked
to see if they are satisfied in the state space of the system, most
commonly represented as a Boolean Decision Diagram (BDD). The

chief weakness of this method is that the state explosion problem
can cause the BDD to be intractable. Recent work in model checking
has looked to solve some of these issues with SAT- and SMT-based
symbolic bounded model checking [13]. However, these methods
still may have difficulty with highly concurrent systems, where the
transition relation becomes large [14].

The other successful efforts tend to fall into the class of theorem
proving methods. In these methods, a set of invariants is built up, and
properties about these are proven to hold within the execution of the
system [15]. Theorem proving methods can apply to infinite programs
and data structures, but require manual expert work to construct the
formulas, which can take up to months of effort.

C. Concurrency reduction

We take inspiration from previous work which has found that
reducing the amount of concurrency in systems helps to simplify
reasoning about their properties. This has found a moderate amount
of success in the concurrent programming community, in particular
with a focus on making concurrent programs simpler to debug and
in reducing timing side channels [16].

Concurrency reduction also has a classic inspiration from dataflow
languages. In static dataflow, if there is a consistent schedule for
the graph, it is possible to schedule the execution of that graph
statically in finite memory. This is also possible for a subset of
dynamic dataflow graphs, and algorithms exist for finding these
schedules based on clustering subgraphs [17]. These methods are
mostly based on finding consistent probabilities that describe how
the system evolves, which if found, give strong guarantees about the
memory required to execute the dataflow graph.

III. BACKGROUND

A. CHP language

In this paper, we use the Communicating Hardware Processes
(CHP) language, a derivative of Hoare’s Communicating Sequential
Processses (CSP) [18], to represent both the high-level sequential
and low-level concurrent specifications of systems. This language is
Turing-complete [19], which allows us to simplify our reasoning and
presentation without sacrificing our ability to generalize this method
to more complex specication languages, such as VerilogCSP [20].
Here we informally present the CHP language. A formal trace-
tree based semantics can be found in [21]. Unless otherwise spec-
ified, variables are represented by lowercase letters, communication
channels are represented by uppercase letters from the beginning of
the alphabet, and process or program fragments are represented by
uppercase letters from the second half of the alphabet.

Each CHP process is built out of smaller processes, built up
according to the following constructions:

• Assignment: x := E. This statement means “assign the value
of expression E to x.”

• Communication: A!E is a statement meaning “send the value of
expression E over channel A,” and B?x means “receive a value
over channel B and store it in variable x.” Both send and receive
are blocking, enabling them to be used as both synchronization
and data-communication primitives.

• Choice: [G1 → P18. . .8Gn → Pn], where each Gi is a Boolean
expression (guard), and each Pi is a program fragment. This
statement is executed by waiting for exactly one of the guards
to be true, and then executing the associated fragment. If the
guards are not mutually exclusive, a thin bar (|) is used instead
of the thick bar (8) to indicate a non-deterministic choice.

• Probe: The Boolean A is true if and only if a communication
on channel A can complete without suspending [22]. Probes are
only allowed to occur in the guards of choice statements.

• Repetition: ∗[P] infinitely repeats statement P .
• Sequential Composition: P ;Q.
• Parallel Composition: P ‖Q.

Several CHP processes can be transformed into a full CHP program
by composing them together in parallel. The execution of this pro-
gram is assumed to be weakly fair, meaning that every continuously
enabled action will eventually be given a chance to execute.

B. Behaviors

Many methods for reasoning about equivalence of concurrent
systems are based in some way on the concept of traces—sequences
of atomic actions [10]. For reasoning about concurrent message-
passing systems, these traces typically overspecify, particularly in the
way that they represent reachable interleavings.

For example, consider the following CHP programs:

P0 , ∗[A0!true;B!false]‖∗[A0?x;A1!x]‖∗[A1?a]‖∗[B?b]

P1 , ∗[A0!true]‖∗[B!false]‖∗[A0?x;A1!x]‖∗[A1?a;B?b]

The program P0 is made of four concurrent sub-programs, or
processes, one which alternates between sending true on channel
A0 and sending false on B; another which reads a value in from A0

and sends that value out on A1; and two processes which read from
channels, A1 and B, and write into variables, a and b. The program
P1 is similar, however, instead of sequencing sends on A0 and B,
it sequences receives on A1 and B.

In both of the programs, an infinite number of communications
will take place, and the channels A0 and A1 will be continuously
communicating true tokens, and channel B will be communicating
false tokens. Additionally, in both programs, the difference in the
count of the tokens passing through channels A0, A1, and B will be
bounded. In many of the metrics that designers are concerned with,
these programs act identically. However, trace-theoretically, they are
distinct due to the reachable interleavings of actions. In P1, the nth
communication on B cannot occur until after the nth communication
on A1, but in P0, it may occur before.

To reason about the equality properties that refer only to data
values computed, it is possible to use behaviors [23]. The behavior
of a trace is represented by a list of communication action sequences
for each channel and a list of decision points (the outcome of a
non-deterministic choice). As our examples do not contain any non-
deterministic choice statements, the behaviors of programs P0 and
P1 will just be sequences of channel actions. In this particular case,
there is only one behavior for each program, and the two programs’
behavior sets are unary and equal:

B(P0) = B(P1) =

A0 7→ true, true, true, . . .
A1 7→ true, true, true, . . .
B 7→ false, false, false, . . .

This method for reasoning about systems is relatively weak by
design, which is advantageous when reasoning about program equiv-
alence with respect to an interface. However, there are certain proper-
ties which cannot be expressed using behaviors, most notably mutual
exclusion. For example, consider the following two processes, each
of which contains a non-critical section (which can be interleaved in
any way) and a critical section (which must be mutually exclusive):

∗[NCS1;CS1]
‖ ∗[NCS2;CS2]

Behaviors cannot be used to observe the property that the two
processes access their critical sections, CSi, in an exclusive manner
since they can only observe the sequence of values on channels.

C. Slack Elasticity

The examples P0 and P1 in the previous section are part of a
special class of CHP programs known as slack elastic programs [23].
This class of programs has the useful property that there will only
be a single behavior in the behavior set. These programs get their
name from the fact that slack (i.e. buffering) can be added to any
channel without altering the behavior. This property has been found to
hold for a wide variety of specifications, and to be very useful when
building complex designs, as it can allow additional performance-
enhancing buffers to be added late in the design without altering the
correctness [24].

Conveniently, all CHP programs that contain neither probes, which
would allow processes to reason about interleavings, nor any shared
resources, which would require reasoning about mutual exclusion,
are slack elastic [2]. This check is purely syntactic, meaning it can
be established very easily. This is a sufficient but not necessary
requirement for slack elasticity, as it is possible for programs to
contain probes and shared resources, but to still only have a single
behavior.

D. Projection

If a system is known to be slack elastic, it is possible to project
programs onto disjoint sets of variables and channels to make
simpler programs without affecting the behavior set. By removing
unneeded synchronization, this process can increase the concurrency
in the system and improve performance. This technique is known as
projection [2]. For example, if we took the program
∗[A?x;L?y;B!x;R!y]

and projected it onto the disjoint sets: {A?, B!, x} and {L?, R!, y},
we get two processes. These processes can be composed in parallel
to form a program that has the same behavior set as the original:
∗[A?x;B!x]‖∗[L?y;R!y]
This may seem counterintuitive at first—the projected program

does not have the same control flow as the original program, and it is
possible for the two processes that make up the program to become
vastly desynchronized. For instance, in the original program, the 3rd
communication on L always follows the 3rd communication on A.
In the projected program, there may be thousands of communications
on L before the first communication on A.

However, when correctness is separated from the interleaving
behavior of a system, and only the data dependencies between
channels are considered (i.e. A feeding to B via x, and L to R
via y), it can easily be seen that these programs are equivalent. In
other words, projection preserves behaviors.

A common use of projection is for pipelining a specification. For
instance, the program:

∗[L?x;R!g(f(x))]

is equivalent to:
∗[L?x; y := f(x);R!g(y)]

which can be transformed by replacing the assignment with channel
actions using the communication axiom [18]:

∗[L?x; (R′!f(x)‖R′?y);R!g(y)]

and then projected onto the sets {L?, R′!, x} and {R′?, R!, y}:

∗[L?x;R′!f(x)]‖∗[R′?y;R!g(y)]

and thereby introducing pipelining. This does not perfectly preserve
the behavior, as it has added a new channel R′, which was not in the
original behavior. However, the externally-facing channels L and R,
which the environment uses to interface with this program, will have
the same behavior. Because the system is not closed, i.e., because
there are externally-facing channels, we cannot give a closed-form
description of the behavior set. Instead, we describe the behavior of
the output channel, R, as a function of the input channel, L and the
iteration count, i:

B(Original) = B(Projected) = ∀i.R[i] 7→ g(f(L[i]))

E. Deadlock prevention

The method we present requires an assumption of deadlock free-
dom, which may be difficult to guarantee in some cases. However,
there are many existing static analysis algorithms for detecting if
deadlocks can occur. In particular, we are interested in algorithms
for ensuring deadlock freedom of finite-state distributed systems.
These algorithms are commonly referred to as deadlock prevention
algorithms, and many methods are known, several of which extend
existing static analysis techniques [25,26]. It has also been found that
these techniques can be more efficient when opportunities to abstract
away data can be identified, for instance in systems which can be
represented as Petri nets [27].

IV. DEPROJECTION

As a slack elastic program only has a single behavior, all traces
reachable by that program will map onto the same behavior. This
means that a single trace through the program can act as a “witness”
for the behavior set. In essence, for slack elastic programs, the
existence of a correct execution means that all executions are correct,
for correctness properties which can be expressed on behaviors, such
as functional equality with respect to an interface.

In this section, we present an algorithm for deprojection, which
takes a known deadlock free, concurrent, slack elastic program and
generates a sequential program which will have the same behavior
set on externally-facing channels. This is similar to finding a total
ordering on actions that is consistent with the partial ordering implied
by the original processes and the synchronization behavior of the
channel communications. The deprojected program can then be used
in analyses which would have previously run on the unmodified
program. For many slack elastic programs and their properties of
interest, this effectively solves the state explosion problem.

The algorithm is built upon a symbolic execution of the program,
which we refer to as the breadcrumb algorithm for the CHP language,
to draw analogy between leaving a trail of breadcrumbs while
navigating a maze, and generating a deprojected program through
symbolic execution. This symbolic execution is looking to find a
path through the program which executes all possible statements,
analogous to building a complete map of a maze.

The algorithm keeps track of the position in the program using
a vector of program counters (PC), representing the state of each
process in the program. At every step, the algorithm attempts to
explore a new part of the program, until it has found a loop back to a
previously explored position, such that the path passes through every
reachable instruction. In the case of branching execution, i.e., choice,
the deprojection algorithm speculatively explores each branch. If it
finds a deadlock—analogous to a dead end in a maze—it backtracks,
and tries to take the other option. This use of a deadlock guarantee
lets the symbolic execution proceed without maintaining any of the
state information which would be needed to evaluate the conditions
of the choice.

1: procedure DEPROJECT(program, pc vec seen, choice):
2: breadcrumbs← []
3: pc vec← get pc vec(program)
4: repeat
5: instr ← get next instr(program)
6: if is assign(instr) then
7: breadcrumbs.append(instr)
8: else if is external comm(instr) then
9: breadcrumbs.append(instr)

10: else if is internal comm(instr) then
11: instr2← get comm(program, instr)
12: if instr2 = Null then
13: replace instr(instr)
14: continue
15: else
16: b←make assign(instr, instr2)
17: breadcrumbs.append(b)
18: end if
19: else if is choice(instr) then
20: if instr ∈ choice then
21: return Fail
22: end if
23: (p0, p1)← get choices(instr)
24: c′ ← choice ∪ {instr}
25: pvs← pc vec seen
26: (b0, pcv0)← deproject(program[p 7→ p0], pvs, c

′)
27: (b1, pcv1)← deproject(program[p 7→ p1], pvs, c

′)
28: if b0 = Deadlock ∧ b1 = Deadlock then
29: return Deadlock
30: else if b0 = Deadlock then
31: breadcrumbs.append(b1)
32: else if b1 = Deadlock then
33: breadcrumbs.append(b0)
34: else
35: (b′0, b

′
1)← align(b0, b1, pcv0, pcv1)

36: b←make choice(instr, b′0, b
′
1))

37: breadcrumbs.append(b)
38: end if
39: else if instr = Null then
40: return Deadlock
41: end if
42: pc vec seen← pc vec seen ∪ {pc vec}
43: pc vec← get pc vec(program)
44: until pc vec ∈ pc vec seen ∧ has successor(pc vec)
45: return breadcrumbs, pc vec
46: end procedure

Fig. 1. Psuedocode for deprojection algorithm

The most significant limitation of the method we present is that we
do not allow for systems where the same choice needs to be taken
twice to reach a previously seen position. Systems built by projection
from a sequential specification will fit within this limitation, but there
are others that may not.

A. Algorithm

The pseudocode for the deprojecton algorithm is shown in Figure 1.
The rest of this subsection gives an informal overview of the
algorithm. This description references line numbers and function
names from Figure 1 when relevant. The next two subsections give
two example applications of this algorithm, again referencing these

line numbers and function names.
This algorithm is defined recursively, and should be initialized with

the full program as the argument to program, and empty sets for
pc vec seen and choice.

The algorithm first saves the current state of the program by getting
a vector of program counters, one for each of the parallel-executing
processes in the program (get pc vec on line 3), then enters a repeat-
until loop. The first step of this loop is to choose an instruction
to execute, based on the current state of the speculative execution,
using the function get next instr (line 5). In concurrent systems,
there will likely be many available next instructions; if possible,
get next instr will select one that has not been executed previously
in the symbolic execution. If this is not possible, it will pick the least
recently-explored instruction available.

If the selected instruction is an assignment or an external commu-
nication, it immediately drops a breadcrumb (lines 6-9). If it is an
internal communication, and the other side of the communication
is ready to execute, the assignment breadcrumb generated from
this communication is dropped (lines 10-18), where the function
get comm searches the program for the ready-to-execute comple-
mentary side of an internal communication. If no action is available,
(i.e., every process has reached a halt condition or some process is
deadlocked) the algorithm returns a deadlock (lines 39-40).

In the case of a choice, both paths are speculatively executed by
running a deprojection with the choice path substituted for the current
process (lines 23-27). As we are limiting ourselves to programs whose
environment guarantees that the control values are deadlock free, if
one branch of the choice results in a deadlock, we assume that the
other branch is the only one which can execute, and so only place
the breadcrumbs from that branch (lines 28-33). If both paths have a
deadlock free execution, the algorithm post-processes them to align
the breadcrumb executions, and then creates a choice, which it adds
to the current list of breadcrumbs (lines 35-37).

Deadlock freedom must be guaranteed by another analysis, outside
of the scope of this paper. During deprojection, we do not keep
track of the data values that are used to evaluate selection, and so a
speculative execution of a choice may lead to an erroneous deadlock.
This deadlock condition must be detected during the speculative
execution. We do this by keeping track of which channels have been
made unavailable by speculative execution, and then detect deadlock
when an unavailable channel action is required for forward progress,
using classic resource-tracking deadlock detection methods [25]. For
the sake of conciseness, resource management and deadlock detection
are not shown in Figure 1.

After processing the current instruction, the state, represented by a
program counter vector pc vec, is added onto the list of previously
seen states and a new pc vec is generated (lines 42 and 43).

This process repeats until the speculative execution reaches a state
it has seen before, where each one of the processes in that program
counter vector has an immediate successor, which may wrap around
in the case of loops (i.e. the first state of the program is the successor
of the last state, if there is a loop). This is accomplished by a check
for has successor in the exit condition of the loop on line 44. This
check is necessary to guarantee weak fairness: that the speculative
execution will not halt in a state where an instruction is enabled, but
has never been explored.

B. Simple example
As an example, consider the simple program:
*[A?a;B?b;C !(a ∧ b)] ‖ *[C?c;D !¬c]

This program has three external channels, A, B, and D, as well as
an internal channel, C. The deprojection of the program is shown in

Program state Breadcrumbs pc vec seen Loop iteration
*[0A?a;1B?b;2C !(a ∧ b)]
‖ *[0C?c;1D !¬c] { } 0

.
*[0A?a;1B?b;2C !(a ∧ b)]
‖ *[0C?c;1D !¬c] A?a {〈0, 0〉} 1

.
*[0A?a;1B?b;2C!(a ∧ b)]
‖ *[0C?c;1D !¬c] A?a;B?b {〈0, 0〉; 〈1, 0〉} 2

.
*[0A?a;1B?b;2C !(a ∧ b)]
‖ *[0C?c; 1D!¬c] A?a;B?b; c := a ∧ b {〈0, 0〉; 〈1, 0〉; 〈2, 0〉} 3

.
*[0A?a;1B?b;2C !(a ∧ b)]
‖ *[0C?c;1D !¬c]

A?a;B?b; c := a ∧ b;
D !¬c

{〈0, 0〉; 〈1, 0〉; 〈2, 0〉; 〈0, 1〉} 4

.
*[0A?a;1B?b;2C !(a ∧ b)]
‖ *[0C?c;1D !¬c]

*[A?a;B?b; c := a ∧ b;
D !¬c] {〈0, 0〉; 〈1, 0〉; 〈2, 0〉; 〈0, 1〉}

Fig. 2. Simple deprojection

Figure 2. The current value of pc vec is represented by bolding and
coloring dark blue the instructions which may execute, and the PC
of each instruction is given as a prepended subscript. The behavior
set for the program can be described by:

B =

{
∀i.C[i] 7→ A[i] ∧B[i]
∀j.D[j] 7→ ¬C[j]

In the first loop iteration, two instructions are ready to execute:
the external communication on A, and the internal receive on C.
These two instructions are both labeled with PC 0, and so the PC
vector associated with this state is 〈0, 0〉. The function get next instr
may choose to execute either, however, if it picks C?c, the check on
line 11 will not find a complementary communication. Therefore,
only the execution of A?a can make it into the breadcrumbs in
the first iteration of the loop, and we add the PC vector 〈0, 0〉 to
pc vec seen. Similarly, in the second iteration, only the execution
of B?b can create a breadcrumb and add 〈1, 0〉 to pc vec seen.

In the third loop iteration, the internal communication on C is
ready, one side sending a ∧ b, and the other receiving into c. This
is an internal communication, and so will not occur in the behavior
set when limited to only the external communications, however for
the deprojected program to represent the same semantics as the
original, the deprojection must drop a breadcrumb with equivalent
semantics. In this case, we can use the synchronous channel definition
of assignment to drop the assignment c := a ∧ b [18]. This is
constructed by the make assign function, in line 16 of the algorithm.
Leaving this state adds the PC vector 〈2, 0〉 to pc vec seen.

In the fourth loop iteration, again two instructions are ready to
execute: an external communication on A, and an external commu-
nication on D. If we execute A a second time, the deprojection will
contain two instances of the A?a, though the first will be outside
of the repetition. As this is less compact, we execute D, dropping
the D !¬c breadcrumb. This is accomplished by get next instr
preferring to select not-previously-executed instructions. Leaving this
state adds the PC vector 〈0, 1〉 to pc vec seen.

After the fourth loop iteration, the PC vector is in a state it has
reached before, 〈0, 0〉. As we have also passed through the states
〈0, 1〉 and 〈1, 0〉, both processes have successors in elements of
pc vec seen, satisfying has successor, and allowing the loop to
terminate. After loop termination, we have a sequence of breadcrumbs
that brings us back to the starting state, and so we can insert an infinite
loop surrounding the entire program, creating the deprojection:
*[A?a;B?b; c := (a ∧ b);D !¬c]

This deprojection does not contain any communication on internal
channels, having replaced the only instance of internal communica-

A

C

F

G

B

Sp
lit

M
er

ge

Fig. 3. Split/merge pipeline

tion with an assignment. From the deprojection, we can derive the
behavior function:

B = ∀i.D[i] 7→ ¬(A[i] ∧B[i])

which is similar to the original behavior description, with substitution
used to remove the channel C. Note that, in this case, we were able
to place the infinite loop around the full set of breadcrumbs, but in
other cases, it may only enclose a subset of the breadcrumbs. The
exact placement of this loop construction is determined by the pc vec
value returned on line 45.

Through brute-force state space enumeration, we can find 12 reach-
able states in the execution of the original program. The deprojected
form of this simple program only has 5 reachable states: the state
where it is receiving A?a, where it is receiving B?b, where it is
assigning c := (a ∧ b), where it is sending D!¬c and the state
between when one iteration of the loop ends and the next begins.
In total, this is a reduction by a factor of 2.4 from the original.

C. Split/merge example

A more realistic example is the split/merge pipeline shown in
Figure 3. The control input for both the split and merge of this
program comes from the external channel C, meaning that a static
analysis cannot know which paths will be taken at runtime.

However, we are assuming that the programs are deadlock free.
This means that any set of choices which results in a deadlock is not
part of the reachable space. These deadlocks can be identified entirely
without knowledge of the concrete data of the program by analysis
of resource requirements and restrictions. When these deadlocks are
found, we can backtrack to the most recently executed choice, and try
the other option. If both options are deadlocking, we backtrack to the
previous choice. In the pseudocode in Figure 1, this is accomplished
with the recursion on lines 26 and 27, and then the deadlock checks
on lines 28 through 33.

If the pipeline in Figure 3 is made out of processes as follows:

C Copy , *[C?c;C0!c,C1!c]

C Buf , *[C1?c0;C2!c0]

Split , *[C0?c1,A?x ; [c1 → L0!x[]¬c1 → R0!x]]

F , *[L0?x0;L1!f (x0)]

G , *[R0?x1;R1!g(x1)]

Merge , *[C2?c2; [c2 → L1?x2[]¬c2 → R1?x2];B !x2]
it can be deprojected into the program:
*[C?c; c0 := c;A?x ; c1 := c; c2 := c0

[c1 → x0 := x ; x2 := f (x0);B !x2
[]¬c1 → x1 := x ; x2 := g(x1);B !x2]]

This deprojection will encounter a deadlock state when it specula-
tively executes the “top” of the split and the “bottom” of the merge
simultaneously. In this case, the F pipeline stage will be attempting
to send on the channel L1, however, the speculation of the merge
will have hidden the receive on this channel. This combination of a
requirement for a resource, and a restriction on a resource leads to a
deadlock, and so the speculative execution on the top of the split and
the bottom of the merge will not be included in the breadcrumbs.

Note that for speculative execution of choice, both choice clauses
have to reach the same PC vector before rejoining. For example, if
the speculative execution where c1 is true re-executes the external
communication on C, it will produce to the breadcrumbs:
x0 := x ; x2 := f (x0);B !x2;C?c

If the speculative execution where c1 is false proceeds as above, it
produces the breadcrumbs:
x1 := x ; x2 := g(x1);B !x2

These need to be realigned before they can be merged into a single
selection statement. This is done using the align function (line 36 of
Figure 1). This function will typically append instructions from the
set of breadcrumbs that reached further in the execution onto the one
that did not, until the two are in the same state. In this case, that
means adding the C?c breadcrumb to the false state, leading to the
final deprojection:
C?c; *[c0 := c;A?x ; c1 := c; c2 := c0

[c1 → x0 := x ; x2 := f (x0);B !x2;C?c
[]¬c1 → x1 := x ; x2 := g(x1);B !x2;C?c]]

We can clean up the original deprojection using copy propagation
and dead variable removal [28], common compiler optimizations
which preserve behaviors on externally facing channels:
*[C?c;A?x ; [c → B !f (x)[]¬c → B !g(x)]]
In the original program, there were over 1,200 reachable states.

After deprojection, there are only 13 reachable states, and after
optimization, only 6. In total, this method reduces the reachable state
space of the simple split/merge by a factor of roughly two hundred.

In this case, the selection is properly nested, meaning that every
n-way split is joined by an n-way merge. This relatively common
scenario can be very efficient when augmented with a heuristic: only
speculatively execute merges if an input is ready. With this heuristic,
this deprojection does not spend time in bad speculative executions,
and proceeds in time linear with respect to the total number of
instructions.

D. Incompleteness
There are cases where speculative execution of selection statements

may diverge, for instance:
*[C?c; [c → A![] c → B !]]
‖ *[A?;D !;A?E !;] ‖ *[B?;F !;B?;G!]

has a choice based on the externally-sourced value from C, which
will select between two processes: one of which alternates between
sending on external channels D and E, and the other on F and G.
That is to say, after the result of a single choice, there is no path
back to the starting PC vector.

If the speculative execution were to put down a second choice
breadcrumb, split the speculative execution, and continue the search
for a previously seen state, it will diverge, as this program does
not have a well-formed deprojection. To avoid these divergences,
we limit undetermined choice to only execute a single time in the
deprojection algorithm. This is accomplished by adding it to the
choice set whenever we speculative execute a choice (line 24), and
then checking that set before further speculative execution (lines 20
and 21).

This is a reasonable solution, because duplicated undetermined
choice is rare in real world systems. Particularly, as these forms of
choice cannot exist in a single-threaded program, they will not be
introduced by projection. The issue highlighted by this example is
that our algorithm can fail if the correct operation of the program
requires an additional constraint on the data values supplied by the
environment beyond those needed for deadlock freedom.

E. Correctness

For correctness, we will first show that the algorithm satisfies two
important properties, halting, and weak fairness, and then we will
describe an algorithm for reprojection, which allows us to certify that
the deprojected program has a behavior set identical to the original.

1) Halting: The deprojection algorithm will always halt.
It will halt under two conditions:

(a) If it reaches a point where no further progress is available
(b) If a deprojection is discovered

The first case will happen if there are no instructions which can
execute, or if we require nested speculative execution of a choice.

In the case that this does not happen, the program will halt if it
enters a state it has seen before where all of the processes in the
program have successors.

First, note that pc vec seen has a finite upper bound on its size.
pc vec is a vector with length equal to the number of processes
in the system. Each one of the elements in this vector has a finite
number of possible values, equal to the number of possible states in
this process. Therefore, the maximum number of elements that can
be in the pc vec seen set is the product of the number of states in
each of the processes. Also note that, when this list is full, every
value in the set either satisfies the has successor function or is in
a state where no instructions can execute. Therefore, if the program
enters the state where the pc vec seen set is full, it will halt and
produce a deprojection.

Now we show that if we do not halt otherwise, the pc vec seen
set will monotonically grow towards this full set.

Line 42 is the only line which modifies pc vec seen, adding
the value of pc vec with a set union. If pc vec was not in the
set, this operation will grow the pc vec seen. We break the case
where it was in the set into the two sub-cases: where pc vec satisfies
has successor, and where it does not.

If it pc vec satisfies has successor, then the algorithm would have
halted on the previous iteration.

If pc vec does not satisfy has successor, and it is in pc vec seen,
then by the definitions of pc vec and has successor and the con-
struction of pc vec seen, there must be at least one process which
has never transitioned from its current state.

By the definition of get next instr when possible a instruction
which has never transitioned will execute in the next cycle, and
if it is an assignment, external communication, or choice, it will
immediately affect pc vec, and grow pc vec seen. If an instruction
which has never transitioned is an internal communication, the
complement of this may not be ready to execute; however, it still

will be given the highest priority for the next loop iteration. If the
algorithm does not detect resource-starvation deadlock, exactly one of
the other processes will contain the complementary communication,
as slack elastic CHP programs do not allow for resource sharing.
When it becomes ready to execute, the value of pc vec will be
different than when it was first detected since the other parts of
the program will have advanced. However, this value it will not be
in pc vec seen, as has successor failing on this process implies
no value in pc vec seen has the successor’s value in this process’s
position. Therefore, its execution will also grow pc vec seen.

2) Weak fairness: The evaluation was weakly fair, in that if the
algorithm halts after discovering a deprojection, then every instruction
that was enabled in the symbolic evaluation was evaluated.

It suffices to show that all of the enabled actions in the final
state have been previously evaluated, as any other previously enabled
actions must have been evaluated if they are no longer in the set of
enabled actions at the final state. As the termination condition check
on has successor will fail if any of the enabled actions have not been
evaluated, in a successful deprojection all enabled actions in the final
state will have been evaluated. Therefore, the breadcrumb algorithm
is weakly fair.

3) Reprojection: To ensure that the deprojected program has the
exact same behavior set as the original program, we can reproject
the program back onto the sets of variables that made up the original
processes. If the set of processes we get is exactly equal to the
original set, then the deprojection will have the same behavior set
by the projection theorem [2]. This is a simple process, and so can
be implemented concisely, making the trusted code base very small.

As an example, consider the deprojection of the split/merge from
section IV-C:
*[C?c; c0 := c;A?x ; c1 := c; c2 := c0

[c1 → x0 := x ; x2 := f (x0);B !x2
[]¬c1 → x1 := x ; x2 := g(x1);B !x2]]

with some additional bookkeeping in the deprojection algorithm to
keep track of which channels are removed when an assignment
statement is created (i.e., in the make assign function from Figure 1)
or when deadlock removes a guard from choice, this can be projected
onto the sets of channel actions and variables that originally made
up the component processes:

{C?, C0!, C1!, c} {C1?, C2!, c0} {L0?, L1!, x0} {R0?, R1!, x1}
{C0?, A?, L0!, R0!, c1, x} {C2?, L1?, R1?, B!, c2, x2}

to get the set of processes:

*[C?c;C0!c,C1!c] *[C1?c0;C2!c0]
*[L0?x0;L1!f (x0)] *[R0?x1;R1!g(x1)]
*[C0?c1,A?x ; [c1 → L0!x[]¬c1 → R0!x]]
*[C2?c2; [c2 → L1?x2[] c2 → R1?x2];B !x2]

This set exactly corresponds to the set of processes that originally
described the split/merge, proving that the deprojection has the same
behavior set on the channels C, A, and B.

V. EVALUATION

A. Implementation

The analysis described in this document was implemented in
roughly 3300 lines of OCaml. Of this, 75 are used for reprojection.

The implementation differs in some ways from the directly de-
scribed algorithm, in that it first runs a type inference method,
inspired by Damas-Hindley-Milner type inference in ML [29] to
determine if a channel is internal or external. Additionally, while the
presentation of the algorithm in Figure 1 uses a list of instructions

Fig. 4. Ordering sensitivity in FIFO deprojection

to represent the breadcrumbs, representing them as a graph made
alignment after speculative choice simpler.

B. Sensitivity to ordering

There are many valid deprojections of a single program, and the
deprojection generated depends on the order in which the program is
explored. This does not affect the correctness of the deprojection, but
it may affect the run time. In particular, as internal communication
must defer until the complementary side of the communication is
ready, if the processes are explored in the “wrong” order, there may
be significant additions to the run time.

As an example, consider the deprojection of a multistage first-
in-first-out (FIFO) buffer, made out of several single-stage FIFO
elements. If the elements are explored in the order they communicate
with each other, then the execution time will be roughly linear with
the number of processes. However, if they are explored in inverse
order, the execution time will be cubic as the failed search for
the complementary communication action may take linear time, and
every other process will attempt to step before the next search.

Measured run time that shows this property on a variety of sizes of
FIFOs is presented in Figure 4. The deprojection was run on FIFOs
ranging from 10 to 500 elements long, in increments of 10, where the
deprojection explored the FIFO elements in optimal order (in-order),
worst case order (inverse order), or random order. This experiment
was run on an eight-core 2.80 GHz Xeon with 16 GB of RAM. Each
data point is the average of running the experiment 10 times. Even in
the worst case, it does not take more than a few minutes to deproject a
500 stage FIFO, which compares very favorably to the time it would
take to explore the possible 2500 states.

C. Testing

The algorithm was run on a variety of benchmarks, both synthetic
ones, as well as cases taken from real designs. These include the
writeback unit of a self-timed MIPS microprocessor [2], numerically
controlled oscillators (NCO) and counters from a GPS [5], the output
of data- and token-flow synthesis methods [7,8] and split/merge
pipelines similar to the one shown in Figure 3, but with longer
pipelines. Performance metrics from this evaluation are presented
in Table I. All of the tests run were reprojection equivalent to the
original programs. These were collected on the same machine as in
the previous subsection.

The number of states listed is only the number of different control
flow states; it does not consider assignments to variables beyond how
they affect this flow. In some cases (e.g., the NCOs), the control flow
is significantly affected by the data, bloating the number of reachable
states. In others, such as an accumulator synthesized using the static
token method, they are independent and the state space is smaller.

To compare to existing partial order reductions techniques, we also
present data collected from the SPIN model checker [30].

TABLE I
TEST RESULTS

Deprojection SPIN partial order reduction
Test case # states before # states after Ratio Time # states before1 # states after Ratio
Static token-synthesized accumulator [7] 320? 15 21 2.7 ms 2,900? 648 4.45
Pipelined merge, 4-way [8] 936? 17 55 3.5 ms 15,248? 2,764 5.51
MIPS writeback unit [2] 1,648? 31 53 12.7 ms 119,956? 48,798 2.45
Pipelined split, 4-way [8] 1,680? 17 98 2.9 ms 179,168? 8,046 22.27
FIFO, ten stage 3,840? 11 389 1.8 ms 655,872? 209,203 3.13
Pipelined counter, 8 bit [5] 4,479,000† 230 19,473 142.9 ms 1.14× 1013† 8,321,214 1.37× 106

Split/merge pipeline, 2 stage 8,304? 14 593 2.7 ms 125,726 32,079 3.92
Split/merge pipeline, 5 stage 9.85× 107† 24 4.1× 106 4.5 ms 8.67×108† 3.57× 108 24.29
Split/merge pipeline, 10 stage 8.4× 1011† 36 2.3× 1010 7.7 ms 5.44×1014† • •
Pipelined NCO, 8 bit [5] 1.27× 1010† 48 2.64× 108 28.8 ms 3.47× 1011† 647,911 535,567
Pipelined NCO, 16 bit [5] 5.45× 1018† 98 5.56× 1016 410.8 ms 1.56× 1021† 6.84× 107 2.27× 1013

Pipelined NCO, 32 bit [5] 1.08× 1036† 202 5.34× 1033 7,174.0 ms 2.96× 1030† • •
? From state space exploration † Estimated 1 SPIN uses a more complex model of communication, increasing state count • Overran 100 GB limit

VI. CONCLUSION

In this paper, we have shown that using a weaker semantic model of
concurrency—behaviors—allows for a solution to the state explosion
problem by allowing a sequential embedding of the program to act
as a stand in for the program for verification. We have created an
algorithm for finding this sequential embedding for the language
CHP, shown how the correctness of this embedding can be efficiently
verified, and found it to be very effective at reducing the complexity
of verification problems on real hardware specifications.

The methods presented have some limitations, in particular that
we restrict undetermined choice to be only single-undetermined, and
that we focus syntactically slack elastic programs. Future work will
include looking into analyses for establishing slack elasticity for a
wider set of programs, as well as static analyses to determine when
systems have finitely-undetermined choice.

ACKNOWLEDGEMENTS

This research was supported in part by NSF grant CCF-1065307

REFERENCES

[1] H. D. Foster, “Why the design productivity gap never happened,” in
Proceedings of the International Conference on Computer-Aided Design.
IEEE Press, 2013, pp. 581–584.

[2] R. Manohar, T. kwan Lee, and A. J. Martin, “Projection: A synthesis
technique for concurrent systems,” in Proceedings of the Fifth Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and
Systems, 1999.

[3] A. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth,
U. Cummings, and T. K. Lee, “The design of an asynchronous mips
r3000 microprocessor,” in Advanced Research in VLSI, 1997., sep 1997,
pp. 164 –181.

[4] D. Fang, J. Teifel, and R. Manohar, “A high-performance asynchronous
fpga: Test results,” in Field-Programmable Custom Computing Ma-
chines, 2005. FCCM 2005. IEEE, 2005, pp. 271–272.

[5] B. Tang, S. Longfield, S. Bhave, and R. Manohar, “A low power
asynchronous gps baseband processor,” in Asynchronous Circuits and
Systems (ASYNC), 2012, may 2012, pp. 33 –40.

[6] P. Beerel, G. Dimou, and A. Lines, “Proteus: An asic flow for ghz
asynchronous designs,” Design Test of Computers, IEEE, vol. 28, no. 5,
pp. 36–51, 2011.

[7] J. Teifel and R. Manohar, “Static tokens: Using dataflow to automate
concurrent pipeline synthesis,” in In Proceedings of International Sym-
posium on Asynchronous Circuits and Systems, 2004, pp. 17–27.

[8] S. Peng, D. Fang, J. Teifel, and R. Manohar, “Automated synthesis
for asynchronous fpgas,” in Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate arrays. ACM,
2005, pp. 163–173.

[9] R. Milner, Communicating and mobile systems: the pi calculus. Cam-
bridge university press, 1999.

[10] J. L. A. van de Snepscheut, Trace Theory and VLSI Design, ser. Lecture
Notes in Computer Science. Springer-Verlag, 1985, vol. 200.

[11] P. Wolper and P. Godefroid, “Partial-order methods for temporal verifi-
cation,” in CONCUR’93. Springer, 1993, pp. 233–246.

[12] E. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[13] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
model checking using sat procedures instead of bdds,” in Proceedings
of the 36th annual ACM/IEEE Design Automation Conference. ACM,
1999, pp. 317–320.

[14] I. Rabinovitz and O. Grumberg, “Bounded model checking of concurrent
programs,” in Computer Aided Verification. Springer, 2005, pp. 82–97.

[15] J. Y. Halpern and M. Y. Vardi, “Model checking vs. theorem proving: a
manifesto,” Artificial Intelligence and Mathematical Theory of Compu-
tation. Academic Press, Inc, vol. 212, pp. 151–176, 1991.

[16] T. Bergan, J. Devietti, N. Hunt, and L. Ceze, “The deterministic
execution hammer: How well does it actually pound nails,” in Workshop
on Determinism and Correctness in Parallel Programming, 2011.

[17] J. Buck and E. Lee, “The token flow model,” in Data Flow Workshop,
1992.

[18] C. Hoare, “Communicating sequential processes,” in Communications of
the ACM, vol. 21, no. 8, August 1978, pp. 666–677.

[19] R. Manohar and A. J. Martin, “Quasi-delay-insensitive circuits are
turing-complete,” in Second International Symposium on Advanced
Research in Asynchronous Circuits and Systems, 1996.

[20] A. Saifhashemi and H. Pedram, “Verilog hdl, powered by pli: a suitable
framework for describing and modeling asynchronous circuits at all lev-
els of abstraction,” in Proceedings of the 40th annual Design Automation
Conference. ACM, 2003, pp. 330–333.

[21] M. van der Goot, “Semantics of VLSI synthesis,” Ph.D. dissertation,
California Institute of Technology, May 1995.

[22] A. J. Martin, “The probe: An addition to communication primitives,”
Information Processing Letters, vol. 20, no. 3, pp. 125–130, 1985.

[23] R. Manohar and A. J. Martin, “Slack elasticity in concurrent computing,”
in Proceedings of the Fourth International Conference on the Mathemat-
ics of Program Construction, Lecture Notes in Computer Science 1422.
Springer-Verlag, 1998, pp. 272–285.

[24] G. Gill, V. Gupta, and M. Singh, “Performance estimation and slack
matching for pipelined asynchronous architectures with choice,” in
IEEE/ACM International Conference on Computer-Aided Design, 2008.
ICCAD 2008. IEEE, 2008, pp. 449–456.

[25] A. K. Elmagarmid, “A survey of distributed deadlock detection algo-
rithms,” ACM Sigmod Record, vol. 15, no. 3, pp. 37–45, 1986.

[26] J. C. Corbett, “Evaluating deadlock detection methods for concurrent
software,” IEEE Transactions on Software Engineering, vol. 22, no. 3,
pp. 161–180, 1996.

[27] Z. Li, M. Zhou, and N. Wu, “A survey and comparison of petri net-based
deadlock prevention policies for flexible manufacturing systems,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 38, no. 2, pp. 173–188, 2008.

[28] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[29] L. Damas and R. Milner, “Principal type-schemes for functional pro-
grams,” in Proceedings of the 9th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 1982, pp. 207–212.

[30] G. J. Holzmann, The SPIN model checker: Primer and reference manual.
Addison-Wesley Reading, 2004, vol. 1003.

