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Low Duty-Cycle Power Constrained Designs

I Sensing every 5 minutes

I Battery life > 1 year

*Culler, D . Overview of Sensor Networks
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Low Duty-Cycle Power Constrained Designs

I Biological implants

I Neurological stimulators

I Cardiac rhythm management

I RFID tags

I Remote sensing devices

Low Duty-Cycle and Power Constrained
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Overview

1. Review leakage mechanisms

2. Review static power reduction techniques

3. Review Power Gating techniques

I Non-state preserving
I State preserving

Our Contributions:

1. Power gating in the context of Async circuits

I Non-state preserving
I State preserving

2. Evaluate Power Gating in Async circuits

3. ZZDRTO - Pipeline Power Gating

4. Evaluate ZZDRTO
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Leakage Mechanisms

I Leakage: Current that �ows when the ideal current is 0A

I Source-Drain Leakage

I Subthreshold Leakage
I Reverse biased diode
I Gate induced Drain leakage (GIDL)

I Gate Leakage

I Direct Tunneling
I Hot carrier injection

Gate(G) Drain(D)Source(S)

Substrate

Iinv

ITUNNEL

IGIDL

ID,weak

IHC
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Leakage Mechanisms: Source-Drain

I Leakage: Current that �ows when the ideal current is 0A

I Source-Drain Leakage

I Subthreshold Leakage
I Reverse biased diode
I Gate induced drain leakage (GIDL)

I Gate Leakage

I Direct Tunneling
I Hot carrier injection

Gate(G) Drain(D)Source(S)

Substrate

IinvIGIDL

ID,weak
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Leakage Mechanisms: Gate Leakage

I Leakage: Current that �ows when the ideal current is 0A

I Source-Drain Leakage

I Subthreshold leakage
I Reverse biased diode leakage
I Gate induced Drain leakage (GIDL)

I Gate Leakage

I Direct Tunneling
I Hot carrier injection

Gate(G) Drain(D)Source(S)

Substrate

ITUNNEL IHC
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Source-Drain Leakage

Gate(G) Drain(D)Source(S)

Substrate

VdVg

ID,weak

>=0 >0.1

Subthreshold leakage (top)

Gate(G) Drain(D)Source(S)

Substrate

Iinv

VdVg

n-

p+

=0 >0

Reverse-biased diode leakage (bottom)
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The Impact of CMOS Scaling on Static Power

I Leakage expected to increase as devices shrink

I Major concerns:

I Gate Oxide Thickness (Tox) scaling
I Channel Miniaturization
I Vdd ,Vth scaling
I Source-Drain punchthrough
I Doping concentration

I Scientists work hard to keep static power manageable
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General Static Power Reduction Techniques

I Device Level: Active devices

I Doping, materials, Vdd ,Vth

I Circuit Level. Gates

I Natural stacks (Fig. A)
I Forced stacks (Fig. B)

I System Level: macro blocks,
datapaths and co-processors

I Power Gating
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Power Gating

I Series Resistance

I Leakage Reduction
I Performance Penalty

I Virtual Power Nets

I gvddv
I gvssv

LOGIC

sleep

VDD

gvssv LOGIC

VDD

gvddv

sleep
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Power Gating Techniques

I Non-state preserving

I Value of dynamic nodes drift towards power rails

I State preserving

I Retain value of registers
I Retain value of dynamic gates

Power Gating:Overview 12/43
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Non-State Preserving

I Cut-o� (CO)

I Internal Nodes �oat

I Foot transistor
(Figure) N-type
transistor

I Head transistors
P-type transistor

I Transient behavior

I Long sleep settle time
I Long wake-up time

_sleep

VDD

gvssv

LOGIC LOGICLOGIC

Power Gating:Non-state preserving 13/43



Motivation Mechanisms Leakage reduction Power Gating Async Power Gating ZDRTO Evaluation Conclusions

State Preserving

I Zig-Zag Cut O� (ZZCO)

I Select Head or Foot
transistor

I Head →0
I Foot →1

I Better transient behavior
vs cut-o�

I Less e�ective for leakage
reduction

VDD

gvssv

_sleep

VDD

VDD

sleep

0 1 0 1 0
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State Preserving - Sneaky paths

sleep

sleep

1 0 1

VDD

VDD

L2 L1
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Overview

1. Review leakage mechanisms

2. Review static power reduction techniques

3. Review Power Gating techniques

I Non-state preserving
I State preserving

Our Contributions:

1. Power gating in the context of Async circuits

I Non-state preserving
I State preserving

2. Evaluate Power Gating in Async circuits

3. ZZDRTO - Pipeline Power Gating

4. Evaluate ZZDRTO

Async Power Gating: 16/43
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Asynchronous Power Gating Techniques

I Standard techniques work! ... mostly

I Conditions necessary for correct operation

_sleep

VDD

gvssv

LOGIC LOGICLOGIC

VDD

gvssv

_sleep

VDD

VDD

sleep

0 1 0 1 0
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Pseudo-Static Gates
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Async Non-State Preserving Power Gating

_sleep

gvssv

VDD

zz

PUN

PDN

VDD

VDD

I Cut-O� (CO)

I Similar approach

I Static CMOS
gates

I Pseudo-static
gates
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Async Non-State Preserving Power Gating

I Isolation Circuits

I Wake-up sequence

I De-assert sleep
I Exercise reset sequence
I Assert safe

Async Power Gating:Non-state preserving 20/43
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Async State Preserving Power Gating

I Zig-Zag Cut-O� (ZZCO)

I Same approach

I Static CMOS Gates
I Pseudo-static gates

I Note forward inverter

sleep
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Async State Preserving Power Gating

I Zig-Zag Cut-O�
Weakened Statizicer
(ZZCO-WS)

I Weakened Staticizer

I gvddv instead of Vdd
I gvssv instead of GND
I Better power savings
I Better performance

I Low-cost

I No topology change
I Similar wiring costs
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Power Gating Circuit Techniques: Evaluation
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Power Gating Circuit Techniques: Steady State Evaluation

Pipeline Cluster Transistors FO4

Add Round Key (AK) 8400 2.4

Shift Rows (SR) 7567 2.6

Byte Substitute (BS) 84144 20.4

Mix Column (MC) 30000 16.8

Circuit Transistor Count

Control Circuitry 18000

Counter overhead 4300

Total Number of transistors: 153000

Async Power Gating:Evaluation 24/43
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Power Gating Circuit Techniques: Steady State Evaluation

I BSIM, T-T, conservative wire cap, 90nm, 298K

I AES pipeline functional blocks

Async Power Gating:Evaluation 25/43
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Power Gating Circuit Techniques: Evaluation

I CO o�ers the best steady state

I Power savings
I Performance

I ZZCO-WS is better in steady state than ZZCO

I Power savings
I Performance
I Negligible implementation costs

Async Power Gating:Evaluation 26/43
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Pipeline Power Gating

I Async: Self throttling circuits

I Control circuitry

I Safe turn o� (Empty pipeline detection)
I Correct dynamic operation (isolation circuits)
I Quick wake-up

ZDRTO:Overview 27/43
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Zero-Delay Ripple Turn On (ZDRTO)

ZDRTO:ZDRTO 28/43
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Zero-Delay Ripple Turn On (ZDRTO)

I Pipeline Cluster = Power Gating Domain

C1 C2 C3 C4

Pipeline Clusters

ZDRTO:ZDRTO 29/43
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Zero-Delay Ripple Turn On (ZDRTO)

I Pipeline Cluster

I Power Gating Domain

I Choose

I Cluster size depends on the application
I Power Gating technique for each cluster

C1 C2 C3 C4

Pipeline Clusters
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Zero-Delay Ripple Turn On (ZDRTO)

I Leverage pipeline stage computation latency

I Hide latency of powering up downstream stages

I Leverage asynchronous circuits robustness

I Do computation during power up

C1 C2 C3 C4

Pipeline Clusters
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Zero-Delay Ripple Turn On (ZDRTO)

I Leverage pipeline stage computation latency

I Hide latency of powering up downstream stages

I Leverage asynchronous circuits robustness

I Do computation during power up - Domino e�ect turn on

C1 C2 C3 C4

Pipeline Clusters
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Zero-Delay Ripple Turn On (ZDRTO)

I Leverage pipeline stage computation latency

I Hide latency of powering up downstream stages

I Leverage asynchronous circuits robustness

I Do computation during power up - Domino e�ect turn on

C1 C2 C3 C4

Pipeline Clusters
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Zero-Delay Ripple Turn On (ZDRTO)

I Leverage pipeline stage computation latency

I Hide latency of powering up downstream stages

I Leverage asynchronous circuits robustness

I Do computation during power up - Domino e�ect turn on

C1 C2 C3 C4

Pipeline Clusters
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ZDRTO Evaluation

I Result trade-o�s between

I Wake-up latency
I Power savings
I Operating frequency

I BSIM4, T-T conservative Wire cap, 90nm, 298K

I Example pipeline: 4-cluster AES pipeline

I Di�erent Power Gating techniques

Evaluation:Setup 35/43
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ZDRTO Evaluation

Pipeline Cluster Transistors FO4

Add Round Key (AK) 8400 2.4

Shift Rows (SR) 7567 2.6

Byte Substitute (BS) 84144 20.4

Mix Column (MC) 30000 16.8

Circuit Transistor Count

Control Circuitry 18000

Counter overhead 4300

Total Number of transistors: 153000
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ZDRTO Evaluation

AK SR BS MC

AK SR BS MC

Baseline

CO

ZZCO-WS

ZZDRTO
ZZCO-WS

Mixed-A

Mixed-B
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ZDRTO Evaluation

Non-ZDRTO Wake-up(ns) Leakage(µW ) Frequency (Mhz)

Baseline 0 7.1 285

CO 32.9 1.5 262

ZZWS 5.9 6.34 180

ZDRTO Wake-up (ns) Leakage(µW ) Frequency(Mhz)

ZZWS 5.6 6.46 182

Mixed-A 18.4 6.05 226

Mixed-B 26.2 1.62 260

Evaluation:Results 38/43
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ZDRTO Evaluation - Wake-up vs Leakage
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Conclusions

I Overview static power leakage mechanisms

I Source-Drain leakage
I Gate leakage
I Analyzed the impact of miniaturization on several currents

I Overview methods to reduce static power

I Device level
I Circuit level
I System level: Maximal gains with Power Gating

Conclusions:Conclusions 40/43
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Conclusions

I Asynchronous Power Gating techniques

I State preserving (Avg 25% savings)
I Non-state preserving (Avg 80% savings)

I Pipeline Power Gating techniques

I Empty pipeline detection
I Zero-Delay Ripple Turn On (ZDRTO)

I Demonstrated trade-o�s

I Wake-up latency
I Power savings
I Operating frequency

Conclusions:Conclusions 41/43
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Backup Cut-O� Backup slides Optimizations

Reverse-Biased Diode Leakage

IINV = Is × (e(Vd/Ut) − 1) (1)

I Reverse biased diode current

I Is =Reverse Saturation Current

I Ut= Temperature voltage

IINV = Ad × JINV (2)

Gate(G) Drain(D)Source(S)

Substrate

Iinv

VdVg

n-

p+

=0 >0
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Source-Drain Leakage

Id ,weak =
W

L
× Io × e(Vgs−Vth) × (1− eVds(mUT )−1) (3)

I Condition Vg < Vth,|Vd | ≥ 0.1 and Vs = Vb = 0

I Vgs =Voltage Gate-Source - exponential dependence

I Vds =Voltage Drain-Source - linear dependence

I UT =Thermal Voltage

Gate(G) Drain(D)Source(S)

Substrate

VdVg

ID,weak

>=0 >0.1
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Source-Drain Leakage: Subthreshold Slope-RVT - 90nm
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Source-Drain Leakage: Subthreshold Slope-HVT - 90nm
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Source-Drain Leakage: Subthreshold Slope-HVT - 65nm
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Direct Tunneling

I Dependent on large voltages Vgd
I Gate to Source-Drain-channel-body

I Electron tunneling
I Hole tunneling

Gate(G) Drain(D)Source(S)

Substrate

Iinv

ID,weak

IGIDL
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Hot Carrier Injection

I Dependent on large voltages Vgd
I Gate-to-Drain tunneling

Gate(G) Drain(D)Source(S)

Substrate

Iinv

ID,weak

IGIDL
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Gate-Induced Drain current

I Dependent on large voltages Vgd
I Gate-to-Drain tunneling

Gate(G) Drain(D)Source(S)

Substrate

V>>0g

IGIDL
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CMOS Scaling: Gate Oxide Thickness Scaling

I Le� = 45× Tox(Intel)

I What happens at 100nm?

I TOX ∼ 12Amstrongs to16Amstrongs

I GIDL. Imposes a limit on TOX as Electric �eld increases
signi�cantly

I GIDL. Less relevant as voltages reduce below the energy band
gap of the Silicon

I Gate Direct Tunneling.

Backup:Technology Scaling 52/43
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Channel Miniaturization

I Add here

Backup:Technology Scaling 53/43
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Source-Drain punchthourgh

I Not a concern f
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Empty Pipeline Detection
I Detect when it is safe to power gate

I Constant reponse time counter

Backup:Control 55/43
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Empty Pipeline Detection
I Interleaved counter allows full throughput operation

I Minimum overhead

Backup:Control 56/43
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Cut-o� techniques

I Cut-o�. Both logic and sleep use RVT devices

I MTCMOS: Logic implemented using low/regular VT while
sleep transistors -> high-VT devices

I BGCMOS: Boosted Gate: high-Vt thick oxide sleep transistors
-> hurt performance -> overdrive Vdd during active mode

I Super Cut-O�: Gate of sleep transistors driven past supply
voltages when idle

I Problems: Foundry support and biasing

Cut-O� Backup slides: 57/43
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Cut-o� transient behaviour
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Self-throttling Asynchronous Circuits

I Stability: G->t is stable when G can change from true to false
only in states where R(t) holds.

I State wont change unless it is acknowledged

I Problems: Noise margins are reduced.

I You should wait to assert �safe� until enough noise margin exist

I Assumption: A monotonic change on input will create a
monotonic change on output

I Noise margins again. Charge Sharing and Capacitive Coupling
can break this assumption

Cut-O� Backup slides: 59/43
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Problems and Future Research

I Stability: G->t is stable when G can change from true to false
only in states where R(t) holds.

I State wont change unless it is acknowledged

I Problems: Noise margins get diminished

I If there is not enough �sleep� time, then you can end-up using
more power

I We should compute break-even point

I We need some tools to power gate in a systematic and
provably correct way

Cut-O� Backup slides: 60/43
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Gate Leakage

I Current that dribbles through the gate of the transistors

I Direct Tunneling
I Hot carrier injection

I Increasing component of the absolute leakage currents

Cut-O� Backup slides:Gate Leakage 61/43
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Device Level

I Device Engineering. Transistors and devices

I Le� ,Tox , Substrate depth, nominal values of Vdd and Vth

I Choice of materials (semiconductor, metal, dielectric)

I Doping pro�le and doping halo

I Requires expertise on device physics

I Choice of fabrication process

Optimizations:Device Level 62/43
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Circuit Level

I Natural transistor
stacking

I Forced stacking
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System Level

I Design speci�c

I SRAM topology
I Amount of dark silicon

I General techniques

I Power gating

Optimizations:System level 64/43
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