Static Power Reduction for Asynchronous Circuits

Carlos Tadeo Ortega Otero

Asynchronous VLSI Group and Architecture Computer Systems Laboratory Cornell University Ithaca, NY, 14853

May, 25th, 2012

Motivation	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Conclusions
000					

Low Duty-Cycle Power Constrained Designs

- Sensing every 5 minutes
- Battery life > 1 year

*Culler, D . Overview of Sensor Networks

Motivation: Applications

Motivation	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000						
			00	0000000	00	

Low Duty-Cycle Power Constrained Designs

- Biological implants
- Neurological stimulators
- Cardiac rhythm management
- RFID tags
- Remote sensing devices

Low Duty-Cycle and Power Constrained

Motivation 00●	Leakage reduction	Power Gating	Async Power Gating	ZDRTO 00000000	Evaluation 000 00	Conclusions 0000
		00	00 0000			

Overview

- 1. Review leakage mechanisms
- 2. Review static power reduction techniques
- 3. Review Power Gating techniques
 - Non-state preserving
 - State preserving

Our Contributions:

- 1. Power gating in the context of Async circuits
 - Non-state preserving
 - State preserving
- 2. Evaluate Power Gating in Async circuits
- 3. ZZDRTO Pipeline Power Gating
- 4. Evaluate ZZDRTO

Mechanisms	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
0000						
			00	0000000	00	

Leakage Mechanisms

- Leakage: Current that flows when the ideal current is 0A
- Source-Drain Leakage
 - Subthreshold Leakage
 - Reverse biased diode
 - Gate induced Drain leakage (GIDL)
- ▶ Gate Leakage
 - Direct Tunneling
 - ► Hot carrier injection _ ITUNNEL _ A IHC

Mechanisms	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Conclusions
0000					

Leakage Mechanisms: Source-Drain

- Leakage: Current that flows when the ideal current is 0A
- Source-Drain Leakage
 - Subthreshold Leakage
 - Reverse biased diode
 - ► Gate induced drain leakage (GIDL)
- ▶ Gate Leakage
 - Direct Tunneling
 - Hot carrier injection

Mechanisms	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
0000						
				0000000	00	

Leakage Mechanisms: Gate Leakage

- Leakage: Current that flows when the ideal current is 0A
- Source-Drain Leakage
 - Subthreshold leakage
 - Reverse biased diode leakage
 - Gate induced Drain leakage (GIDL)
- Gate Leakage
 - ► Direct Tunneling
 - ► Hot carrier injection Itunnel Inc

Mechanisms	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Conclusions
0000					

Source-Drain Leakage

Subthreshold leakage (top)

Reverse-biased diode leakage (bottom)

	Mechanisms	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000

The Impact of CMOS Scaling on Static Power

- Leakage expected to increase as devices shrink
- Major concerns:
 - ▶ Gate Oxide Thickness (*T*_{ox}) scaling
 - Channel Miniaturization
 - V_{dd}, V_{th} scaling
 - Source-Drain punchthrough
 - Doping concentration
- Scientists work hard to keep static power manageable

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000

General Static Power Reduction Techniques

- Device Level: Active devices
 - Doping, materials, V_{dd}, V_{th}
- Circuit Level. Gates
 - Natural stacks (Fig. A)
 - Forced stacks (Fig. B)
- System Level: macro blocks, datapaths and co-processors
 - Power Gating

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
		•• • • •	00 00 00 0000		000 00	

Power Gating

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
		00	00	0	000	
			00 0000			

Power Gating Techniques

- Non-state preserving
 - Value of dynamic nodes drift towards power rails
- State preserving
 - Retain value of registers
 - Retain value of dynamic gates

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
					0000000	00	

Non-State Preserving

- Cut-off (CO)
- Internal Nodes float
 - Foot transistor (Figure) N-type transistor
 - Head transistors
 P-type transistor
- Transient behavior
 - Long sleep settle time
 - Long wake-up time

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
			00				

State Preserving

- Zig-Zag Cut Off (ZZCO)
- Select Head or Foot transistor
 - ► Head $\rightarrow 0$
 - ▶ Foot $\rightarrow 1$
- Better transient behavior vs cut-off
- Less effective for leakage reduction

Motivation	Mechanisms	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Conclusions
			00			

State Preserving - Sneaky paths

	is Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000 0000 0		00 0 00	00 00 00 0000	0 0000000	000	0000

Overview

- 1. Review leakage mechanisms
- 2. Review static power reduction techniques
- 3. Review Power Gating techniques
 - Non-state preserving
 - State preserving

Our Contributions:

- 1. Power gating in the context of Async circuits
 - Non-state preserving
 - State preserving
- 2. Evaluate Power Gating in Async circuits
- 3. ZZDRTO Pipeline Power Gating
- 4. Evaluate ZZDRTO

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00	••		000	0000
					0000000	00	

Asynchronous Power Gating Techniques

- Standard techniques work! ... mostly
- Conditions necessary for correct operation

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Conclusions
			00		
			00		
			0000		

Pseudo-Static Gates

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
				0	0000000	00	

Async Non-State Preserving Power Gating

- Cut-Off (CO)
- Similar approach
 - Static CMOS gates
 - Pseudo-static gates

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
				00			

Async Non-State Preserving Power Gating

- Isolation Circuits
- Wake-up sequence
 - De-assert sleep
 - Exercise reset sequence
 - Assert safe

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
				•••			

Async State Preserving Power Gating

- Zig-Zag Cut-Off (ZZCO)
- Same approach
 - Static CMOS Gates
 - Pseudo-static gates
- Note forward inverter

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
				00			

Async State Preserving Power Gating

- Zig-Zag Cut-Off Weakened Statizicer (ZZCO-WS)
- Weakened Staticizer
 - gvddv instead of Vdd
 - gvssv instead of GND
 - Better power savings
 - Better performance
- Low-cost
 - No topology change
 - Similar wiring costs

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
				0000			

Power Gating Circuit Techniques: Evaluation

CO

ZZCO

ZZCO-WS

Async Power Gating: Evaluation

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
				0000			

Power Gating Circuit Techniques: Steady State Evaluation

Pipeline Cluster	Transistors	FO4
Add Round Key (AK)	8400	2.4
Shift Rows (SR)	7567	2.6
Byte Substitute (BS)	84144	20.4
Mix Column (MC)	30000	16.8

Circuit	Transistor Count
Control Circuitry	18000
Counter overhead	4300

Total Number of transistors: 153000

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
				0000			

Power Gating Circuit Techniques: Steady State Evaluation

- BSIM, T-T, conservative wire cap, 90nm, 298K
- ► AES pipeline functional blocks

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
					0000000	00	
				0000			

Power Gating Circuit Techniques: Evaluation

- CO offers the best steady state
 - Power savings
 - Performance
- ZZCO-WS is better in steady state than ZZCO
 - Power savings
 - Performance
 - Negligible implementation costs

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
			00	0000000	000	
			00 0000			

Pipeline Power Gating

- Async: Self throttling circuits
- Control circuitry
 - Safe turn off (Empty pipeline detection)
 - Correct dynamic operation (isolation circuits)
 - Quick wake-up

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
					000000	00	
				0000			

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
				0000000	00	
		00	00			

Pipeline Cluster = Power Gating Domain

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
					0000000		

- Pipeline Cluster
 - Power Gating Domain
- Choose
 - Cluster size depends on the application
 - Power Gating technique for each cluster

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
					0000000		

- Leverage pipeline stage computation latency
 - Hide latency of powering up downstream stages
- Leverage asynchronous circuits robustness
 - Do computation during power up

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
					0000000		

- Leverage pipeline stage computation latency
 - Hide latency of powering up downstream stages
- Leverage asynchronous circuits robustness
 - Do computation during power up Domino effect turn on

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
					0000000		

- Leverage pipeline stage computation latency
 - Hide latency of powering up downstream stages
- Leverage asynchronous circuits robustness
 - Do computation during power up Domino effect turn on

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
000	0000		00			000	0000
					000000		

- Leverage pipeline stage computation latency
 - Hide latency of powering up downstream stages
- Leverage asynchronous circuits robustness
 - Do computation during power up Domino effect turn on

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Evaluation	Conclusions
			00	0	000	
			00 0000			

- Result trade-offs between
 - Wake-up latency
 - Power savings
 - Operating frequency
- ▶ BSIM4, T-T conservative Wire cap, 90nm, 298K
- Example pipeline: 4-cluster AES pipeline
- Different Power Gating techniques

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Evaluation	Conclusions
000	0000		00			000	0000
				0000			

Pipeline Cluster	Transistors	FO4
Add Round Key (AK)	8400	2.4
Shift Rows (SR)	7567	2.6
Byte Substitute (BS)	84144	20.4
Mix Column (MC)	30000	16.8

Circuit	Transistor Count
Control Circuitry	18000
Counter overhead	4300

Total Number of transistors: 153000

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Evaluation	Conclusions
000	0000		00			000	0000
					0000000	00	
				0000			

		Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Evaluation	Conclusions
000	0000		00			000	0000
					0000000	00	
				0000			

Non-ZDRTO	Wake-up(<i>ns</i>)	$Leakage(\mu W)$	Frequency (<i>Mhz</i>)
Baseline	0	7.1	285
СО	32.9	1.5	262
ZZWS	5.9	6.34	180

ZDRTO	Wake-up (<i>ns</i>)	$Leakage(\mu W)$	Frequency(<i>Mhz</i>)
ZZWS	5.6	6.46	182
Mixed-A	18.4	6.05	226
Mixed-B	26.2	1.62	260

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Evaluation	Conclusions
					00	

ZDRTO Evaluation - Wake-up vs Leakage

Wake-up time vs Leakage for multiple experiments

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Conclusions
					0000
			00		
			0000		

Conclusions

- Overview static power leakage mechanisms
 - Source-Drain leakage
 - Gate leakage
 - Analyzed the impact of miniaturization on several currents
- Overview methods to reduce static power
 - Device level
 - Circuit level
 - System level: Maximal gains with Power Gating

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO		Conclusions
			00 00 00 0000		000	0000

Conclusions

- Asynchronous Power Gating techniques
 - State preserving (Avg 25% savings)
 - Non-state preserving (Avg 80% savings)
- Pipeline Power Gating techniques
 - Empty pipeline detection
 - Zero-Delay Ripple Turn On (ZDRTO)
- Demonstrated trade-offs
 - Wake-up latency
 - Power savings
 - Operating frequency

	Leakage reduction	Power Gating	Async Power Gating	ZDRTO	Conclusions
					0000

Acknowledgements

- Prof Manohar, Prof Myers and Prof Suh
- ► Jonathan Tse
- λ-team: Rob Karmazin and Benjamin Hill
- ► Async Members: Nabil, Fang, Filipp, Basit, Ilya, Stephen
- CSL faculty and students
- Funding agencies:

Static Power Reduction for Asynchronous Circuits

Carlos Tadeo Ortega Otero

Asynchronous VLSI Group and Architecture Computer Systems Laboratory Cornell University Ithaca, NY, 14853

May, 25th, 2012

Backup ●0000 000 000

Cut-Off Backup slides ○

Reverse-Biased Diode Leakage

$$I_{INV} = I_s \times (e^{(Vd/Ut)} - 1)$$
⁽¹⁾

- Reverse biased diode current
- ► *I_s* = Reverse Saturation Current
- U_t = Temperature voltage

$$I_{INV} = A_d \times J_{INV} \tag{2}$$

Backup Cut-Off Backup slides 0€000 0 000

Optimizations

Source-Drain Leakage

$$I_{d,weak} = \frac{W}{L} \times I_o \times e^{(V_{gs} - V_{th})} \times (1 - e^{V_{ds}(mU_T) - 1})$$
(3)

- ▶ Condition $V_g < V_{th,} |V_d| \ge 0.1 \text{ and } V_s = Vb = 0$
- V_{gs} =Voltage Gate-Source exponential dependence
- V_{ds} = Voltage Drain-Source linear dependence
- ▶ U_T =Thermal Voltage

Backup 00●00 000 000 000 Cut-Off Backup slides 0 Optimization 0

Source-Drain Leakage: Subthreshold Slope-RVT - 90nm

Backup 000●0 000 000 000 Cut-Off Backup slides 0 Optimization 0

Source-Drain Leakage: Subthreshold Slope-HVT - 90nm

Backup 0000● 000 000 000 Cut-Off Backup slides 0 Optimization 0

Source-Drain Leakage: Subthreshold Slope-HVT - 65nm

Backup 00000 000 000 000

Direct Tunneling

- Dependent on large voltages V_{gd}
- Gate to Source-Drain-channel-body
 - Electron tunneling
 - Hole tunneling

Backup ○○○○○ ○●○ ○○○ ○○○

Hot Carrier Injection

- Dependent on large voltages V_{gd}
- Gate-to-Drain tunneling

Gate-Induced Drain current

- Dependent on large voltages V_{gd}
- Gate-to-Drain tunneling

Backup 00000 000 000 000

Cut-Off Backup slides ○ Optimization:

CMOS Scaling: Gate Oxide Thickness Scaling

- $L_{eff} = 45 \times T_{ox}(\text{Intel})$
- What happens at 100nm?
- $T_{OX} \sim 12$ Amstrongs to16Amstrongs
 - ► GIDL. Imposes a limit on *T_{OX}* as Electric field increases significantly
 - ► GIDL. Less relevant as voltages reduce below the energy band gap of the Silicon
 - Gate Direct Tunneling.

Cut-Off Backup slides ○ Optimizations

Channel Miniaturization

Backup 00000 000 00● 00 Cut-Off Backup slides 0 Optimizations

Source-Drain punchthourgh

Not a concern f

Backup	Cut-Off	slides
•0		

Empty Pipeline Detection

- Detect when it is safe to power gate
- Constant reponse time counter

Backup 00000 000 000 000

Empty Pipeline Detection

- Interleaved counter allows full throughput operation
- Minimum overhead

Cut-off techniques

- Cut-off. Both logic and sleep use RVT devices
- MTCMOS: Logic implemented using low/regular VT while sleep transistors -> high-VT devices
- BGCMOS: Boosted Gate: high-Vt thick oxide sleep transistors
 -> hurt performance -> overdrive Vdd during active mode
- Super Cut-Off: Gate of sleep transistors driven past supply voltages when idle
- Problems: Foundry support and biasing

Cut-Off Backup slides 0 Optimizations 0 0

Cut-off transient behaviour

Backup 00000 000 000 000

Cut-Off Backup slides ©

Self-throttling Asynchronous Circuits

- Stability: G->t is stable when G can change from true to false only in states where R(t) holds.
 - State wont change unless it is acknowledged
- Problems: Noise margins are reduced.
 - ► You should wait to assert "safe" until enough noise margin exist
- Assumption: A monotonic change on input will create a monotonic change on output
 - Noise margins again. Charge Sharing and Capacitive Coupling can break this assumption

Problems and Future Research

- Stability: G->t is stable when G can change from true to false only in states where R(t) holds.
 - State wont change unless it is acknowledged
- Problems: Noise margins get diminished
- If there is not enough "sleep" time, then you can end-up using more power
 - We should compute break-even point
- We need some tools to power gate in a systematic and provably correct way

Backup

Backup 00000 000 000 000 Optimizations

Gate Leakage

Current that dribbles through the gate of the transistors

- Direct Tunneling
- Hot carrier injection

Increasing component of the absolute leakage currents

Backup 00000 000 000 000

Device Level

- Device Engineering. Transistors and devices
- L_{eff}, T_{ox}, Substrate depth, nominal values of V_{dd} and V_{th}
- Choice of materials (semiconductor, metal, dielectric)
- Doping profile and doping halo
- Requires expertise on device physics
- Choice of fabrication process

Backup 00000 000 000 000

Optimizations o o o

Circuit Level

- Natural transistor stacking
- Forced stacking

Backup 00000 000 000 000

System Level

- Design specific
 - SRAM topology
 - Amount of dark silicon
- General techniques
 - Power gating

