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Computing on the 21st century is rapidly moving from the personal computer

model, into a ubiquitous configuration, where technology will weave into the fabric

of everyday life. These ubiquitous or pervasive computing is enabled by Wire-

less Sensor Networks (WSNs). Engineers deploy WSNs in a myriad applications

ranging from implanted medical monitoring devices to industrial control systems.

Node lifetime and throughput are crucial metrics in the design space. Pre-

viously, energy reduction at the cost of performance is a common engineering

trade-off for mote microcontrollers. However, the increased application complexity

requires greater computational power, while retaining a low-power envelope.

In this thesis, we study the use of Quasi Delay-Insensitive (QDI) circuits to

design a microcontroller that fits the WSN application space. All our architectural

and circuit decisions keep the focal point on maximizing the sensor node lifetime

and performance of a WSN node system. The reduced energy consumption and

increased processing power enables more complex operations on collected data to

be performed locally. However, even with the reduction of the use of energy-

hungry communication systems, any data or computed results must be eventually

transmitted wirelessly for remote collation. We study two of the main processing

challenges a design engineering faces while transmitting data: serial interfaces to

peripherals, and encryption of the data over an insecure link.
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CHAPTER 1

INTRODUCTION

Computing is not about computers any more.

It is about living

Nicholas Negroponte

Our world is becoming increasingly connected and instrumented with sensors,

actuators, and data processors. This grid of smart elements will rapidly shift

the 21st century computing paradigm from the personal computer model into a

configuration where technology “weaves into the fabric of everyday life” [68]. A

myriad of applications are enabled by this ubiquitous computing, ranging from

biological microorganism detection, implanted medical monitoring systems, bat-

tlefield surveillance, to industrial sensing devices [1,68]. The day when intelligent

systems intertwine seamlessly with the everyday life is invariably happening, and

it is arriving quickly.

Ubiquitous or pervasive computing is enabled by Wireless Sensor Networks

(WSN). WSNs are networks consisting of fine-grained, spatially distributed nodes

that gather data from our environment through sensors and can process, transmit,

and act or react to the sensed stimuli [1].

WSNs are comprised of many small, low-cost nodes or motes that gather, pro-

cess and propagate data about their surrounding environment. Deployment life-

times can exceed several months, making node lifetime a crucial metric in the

design space. However, improved node lifetime should not come at the cost of per-

formance. Increasing application complexity requires more processing execution

power, forcing more aggressive peak performance targets for sensor nodes. Part of

2



this is driven by the ever growing complexity of application requirements, and part

of it is driven by the high cost of wireless communication—doing more computa-

tion at the sensing node and transmitting less information is better operating point

from a system lifetime perspective than transmitting raw data over the wireless

link [1].

Off-the-shelf solutions for microcontrollers used in WSNs include general pur-

pose processors, and embedded microcontrollers. On one side, general purpose pro-

cessors include Intel’s Quark, and ARM processors. On the other hand, embedded

microcontrollers include the Texas Instruments MSP430 [24], Renesas RL78 [59],

Silicon Labs Energy Micro, Microchip “nanowatt” PICs [43], and Atmel AVR “Pico

Power” based processors [4,5].

General purpose processors are more powerful than their embedded counter-

parts. For example, the Quark SoC X1000 processor can run at 400MHz and pro-

vides high speed PCI Express, Ethernet interfaces. However Quark’s 2W power

consumption makes its use prohibitive for applications where the desired deploy-

ment time is several months or even years.

While embedded processors provide multiple advantages over general-purpose

microcontrollers, they do not necessarily fit the WSN paradigm. This potential

mismatch arises partly because of low-performance rating, and partly because the

difficulty in handling the event-driven nature of WSN computation.

Table 1.1 shows the energy consumption and performance of readily available

off-the-shelf microcontrollers. At the time of this writing, none of them offer per-

formance in excess of 50MHz. As for power at 50MHz, Atmel’s ARM SAM4L

processor uses 28mW of power. A common 35mAh, 3V CR1220 battery will be
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Table 1.1: Energy consumption of commodity processors used in WSNs

Processor Energy Voltage
µA/MHz V

90 @ 12MHz 3.3
212 @ 12MHz 1.68Atmel ARM SAM4L [3]
180 @ 48MHz 3.3
190 @ 1MHz 1.8

AVR ATtiny13A [4]
450 @ 8MHz 5.0
35 @ 0.5MHz 1.8

PIC 10LF320 [43]
37 @ 16MHz 2.0
190 @ 10MHz 3.0

Renesas RL78 [59]
154 @ 24MHz 3.0
160 @ 8MHz 1.8

TI MSP430-CC430 [24]
225 @ 20MHz 2.4
31 @ 0.125MHz 0.9

TI MSP430-L092 [25]
45 @ 5MHz 1.3

fully depleted within 4 hours of constant operation. This example highlights the

need for an energy efficient and powerful processor that can improve the lifetime

of a deployed node.

Fortunately, most sensor network applications are bursty e.g. executing only

when sensor data is available then returning to a quiescent state. This quiescent or

sleep state could be significantly longer than the execution period, so minimizing

power consumption during this idle phase is of paramount importance.

While in active mode, research shows that aggressive energy reduction at the

cost of performance is a common trade-off for WSN microcontrollers. Some ex-

amples in this space include the MICA2 [22] and Smartdust [56] motes. MICA2

uses commercially available Atmel 128L microcontrollers, which provide good per-

formance but relatively high energy consumption. In contrast, the Smartdust

microcontroller is a single-pipeline RISC microcontroller that uses only 12 pJ per

instruction but runs at a frequency of 500 kHz. At the extreme of the tradeoff
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space is the Phoenix microcontroller, which uses only 2.8 pJ per instruction but

runs at only 106 kHz [62].

While energy reduction in embedded microcontrollers is of paramount impor-

tance, it should not at a high cost to the performance. In addition, energy ex-

penditure in data processing is much less compared to the energy cost of data

communication. A high-performance microcontroller can potentially reduce the

total energy consumed by enabling more data processing or compression on the

local node, thus limiting expensive transmission on the raw data link [1,30,57].

Pottie, Kaiser et al. [57], show an example of the effects of fast local data pro-

cessing. They demonstrate that in a multi-hop WSN topology, the energy cost of

transmitting 1KB over a distance of 100m through a multi-hop network configu-

ration, is approximately equivalent the same of executing 3 million instructions on

a 100MIPS/W processor.

A fast microcontroller can potentially enable WSN global optimizations. By

compressing and reducing the transmitted data size, for example, less bandwidth is

required for sending and receiving data. A slow microcontroller would not be able

to perform such tasks without incurring performance lag and increased response

time, which might be critical for real-time applications. Compression and fast local

data processing are effective mechanisms to utilize the limited resources of a WSN.

In this thesis, we present the design and implementation details of an Ultra-

Low power Sensor Network Asynchronous Processor (ULSNAP) that is targeted

at the sensor-node application space. Its advanced circuit design and event driven

architecture provide increased horsepower with a minimal increase in energy con-

sumption. The measured numbers of our ULSNAP test chip show that when

idle, our chip consumes only 9 µW, with leakage power as the only contributor.
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It also has a fast wake-up time, transitioning from idle to active in only 6.5 ns.

When active, our 90 nm chip delivers 93MIPS at 1.2V and 47 MIPS at 0.95V

using 47 pJ and 29 pJ per cycle, respectively. ULSNAP is Pareto-optimal in the

energy-performance space relative to other state of the art microcontrollers in its

class, delivering more performance and increased node lifetime compared to readily

available microcontrollers.

We achieved these results by exploiting the bursty operation of WSN to im-

prove node lifetime. By paring ULSNAP with static power gating techniques with

minimal impact of wake up time we can improve the sensor node lifetime sig-

nificantly. This thesis shows that static power consumption can be reduced by

anywhere from 20% to 80%, depending on the technique used. One can pair these

techniques with energy harvesting systems that further maximize the mote oper-

ating lifetime. Even though these techniques are available in synchronous circuits,

they usually come with power and delay penalties. Using power gating in the con-

text of asynchronous systems translates in high power gains, with extremely little

overhead and fast wake-up time.

In this thesis, we also present the analysis and design of a cryptographic system

that is suitable for the WSN design space. Cryptography is a critical block within

any WSN since encryption is arguably the first line of defense to protect the con-

fidentiality of data over the wireless link. Our cryptographic system can provide

up to 50x performance over its software counterpart while potentially improving

the node lifetime.

Our measured and simulated results show that our microcontroller, ULSNAP, is

a good fit for the WSN paradigm and snow how ULSNAP can help bring ubiquitous

computing into our everyday life.
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1.1 SNAP

Kelly, Ekanayake, and Manohar proposed a novel instruction set architecture (ISA)

designed expressly for sensor networks called the SNAP ISA [29]. This ISA was

originally to be implemented on a custom chip multi-processor. However, the event

driven architecture of the SNAP ISA offered a unique opportunity for use in the

WSN space. The SNAP ISA fits the WSN model by reducing the dynamic instruc-

tion count—oftentimes the dynamic instruction count for support code running on

processors with more traditional ISAs processor is a two-fold the number of in-

structions that do useful application work [12]. To take advantage of this properly

of the SNAP ISA, the designers developed the Sensor Network Asynchronous Pro-

cessor (SNAP), which offered an attractive performance/energy tradeoff for the

WSN space at the time it was fabricated.

Inspired by the high performance and low energy of SNAP, we present in this

thesis the design of ULSNAP. The architectural of ULSNAP is a significant modifi-

cation of the original SNAP design, which allows to run at a lower energy point with

higher throughput. ULSNAP can deliver almost 100MHz using less than 4.5mW

of power. The new functionality added to ULSNAP makes it an easy to use as

a microcontroller for WSN nodes. Furthermore, the reduced power consumption

in ULSNAP compared to its SNAP counterpart yields longer node lifetime while

maintaining high throughput. The measured results of the original SNAP chip

showed that SNAP can run at 4MHz and use 40 pJ on its most energy efficient

configuration and run at a maximum throughput of 129MHz while using 250 pJ.

In contrast, the ULSNAP implementation can run at 47MHz using only 29 pJ.

While the SNAP chip, fabricated in 0.13µm technology, proved itself a good can-

didate for WSN, the development of ULSNAP and the techniques presented in this
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manuscript present a significant advancement in the capabilities provided by an

asynchronous processor in a WSN node.

1.2 Contributions

The original contributions in this dissertation can be summarized as follows:

• Power gating in the context of asynchronous circuits. We present power gat-

ing techniques in the context of asynchronous circuits and we explain the

minimum conditions and requirements to implement different power gating

techniques in asynchronous circuits.

• Design, implementation, and measured results of ULSNAP. The circuits,

architectures and methodologies presented in this manuscript push the limits

of the state of the art by showing a microcontroller that is in the Pareto op-

timal front of the energy-delay curve of computation. Our measured results

demonstrate an asynchronous high throughput low energy microcontroller

that befit the WSN paradigm.

• Evaluation of the impact of using ULSNAP in Wireless Sensor Networks. We

adapt a model for sensor network node lifetime to measure the impact of our

proposed architectures and circuits on WSN node lifetime.

• Asynchronous Implementation of AES. Cryptography is a critical capability

in the WSN space. In this thesis, we present the design and implementation

of a fully asynchronous AES hardware block. Our circuit 8 pJ per bit while

delivering 950Mbps. Furthermore, our implementation is the Pareto-optimal

of the energy-throughput space compared to the best implementations in the

literature.
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• Analysis of Encryption in a WSN microcontroller. Encryption is arguably

the first line of defense to protect data transmitted over a wireless link. In

this thesis, we analyze the trade-offs of augmenting a microcontroller with

hardware, software, and hybrid configurations of an AES encryption engine,

as well as the implementation details of an AES encryption engine on a WSN

microcontroller.
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CHAPTER 2

BACKGROUND

Sometimes you are in sync with the times,

sometimes you are in advance,

sometimes you are late

Bernardo Bertolucci

We can categorize digital circuits as being synchronous or self-timed (aka asyn-

chronous). Synchronous circuits rely on a global signal called a clock to implement

sequencing and determine when data can be sampled. Self-timed circuits use hand-

shaking protocols to provide synchronization between processes and uses various

methods to determine the validity of data. Although many self-timed circuits

families exist, in this thesis we use mostly Quasi Delay-Insensitive (QDI) circuits

introduced by Martin [38]. A survey of other self-timed methodologies and circuit

families can be found in [16].

2.1 Quasi Delay-Insensitive (QDI) Circuits

Most of the circuits described in this thesis were built using QDI circuits derived

using Martin synthesis [38]. QDI circuits are a subset of asynchronous circuits

since they operate without a global clock.

While synthesizing QDI circuits, the design specification is first expressed in

the Communicating Hardware Processes (CHP) language. The synthesis procedure

decomposes a CHP program into many fine-grained hardware processes operating
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in parallel. These processes synchronize by communicating tokens over delay-

insensitive channels that are implemented using a delay-insensitive protocol.

Send Recv
data 0
data 1

ack

data 0

data 1

ack

1

2

3

4

Sending '0' Sending '1'

Figure 2.1: Four-Phase Handshake

A single-bit channel communication is shown in Fig. 2.1. Here, the processes

synchronize using a delay-insensitive protocol we refer to as the dual-rail four-phase

handshake protocol [66]. To transmit data, the sending process asserts either the

true (data1) or false (data0) line, which the receiving process acknowledges, after

which the channel resets (3,4).

2.2 Synthesis of QDI circuits

Martin describes a synthesis method for QDI circuits [38]. Fig. 2.2 shows the de-

sign flow for circuits created with this method. The overall design specification

of a circuit is first expressed by CHP This first CHP program is often referred as

Sequential CHP. A short summary of CHP can be found in Appendix A. After

a series of CHP to CHP transformations, the CHP is broken down into a set of

simple processes running in parallel. This set of CHP programs is often referred to

as Decomposed CHP. The transformation of a sequential specification to the final

concurrent system is done using semantics preserving transformations. Therefore,

if we know that the original sequential specification is correct the final concurrent
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implementation is correct as well [39]. The main program transformation method-

ologies include Process Data Decomposition [38], Projection [36], and Pipelined

mutual exclusion (PME) [35].

Once decomposed, a CHP undergoes a series of syntactic translations that

replace all channel communication actions with a handshake protocol. At the

same time, all variables assignments are replaced by boolean-valued expressions in

a process known as Handshaking Expansion. The resulting program is a subset of

CHP using only boolean-valued expressions. This sub-language is often referred

to as handshaking expansion (HSE) as well. The HSE is then transformed into a

Production Rule Set (PRS) by following a Production Rule Synthesis that consists

on three main steps: state assignment, guard strengthening, and symmetrization.

A production rule (PR) takes the form: G 7→ S, whereG is a boolean expression

called the guard, and S is the boolean assignment. Typically, a PR corresponds

to a pullup or pulldown switching network, depending on whether the boolean S

was true or false, respectively. For example, program 2.1 represents the production

rule for the pullup network of node c.

Program 2.1 A sample production rule representing pullup network of node c

a ∧ b → c↑

A production rule can be transformed into a digital netlist by making sure

that all rules in the PRS are CMOS-implementable. For the PRS to be CMOS-

implementable, all variables used in the pulldown must not be inverted and all

variables in the pullup must be inverted. The process of converting a PRS into

one that is directly implementable in CMOS is called bubble reshuffling.

As an illustrative example we discuss how to express a pipeline stage imple-
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Expansion

Production Rules

Digital Netlist

Layout

Physical Chip

CHP transformations

Syntactic translation

Production Rule Synthesis
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Mask Design

CHP transformations

Reshuffling

Figure 2.2: Synthesis of Asynchronous Circuits

Program 2.2 Buffer performing computation g(f(·))
S ≡ *[ IN ?x ; OUT !(g(f (x ))) ]

menting a complex function (g · f)(x). This function is described by the CHP

program 2.2.

The stage, S, accepts a data token, x, on an input channel, IN . The output

of the pipeline stage on the output channel OUT is a data token representing the

computed value of the function g(f(x)).

We can first break the complex g(f(x)) function into two functions as shown

in program 2.3.

Program 2.3 Buffer performing computation g(f(·))
S ≡ *[ IN ?x ; y := f (x ); z := g(y); OUT !(z ) ]

Furthermore, we can remove the unnecessary sequencing on program 2.3 by

projecting on variable x as shown on program 2.4
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Program 2.4 Projecting on variable x,z

S ≡ *[IN ?x ; ( Y !f (x ) ∥ Y ?y ); z := g(y); OUT !z ]

S ≡ *[IN ?x ; Y !f (x )] ∥ *[Y ?y ; Out !g(y)]

The resulting process is shown in program 2.5:

Program 2.5 Decomposed buffer

S ≡ *[IN ?x ; Y !f (x )] ∥ *[Y ?y ; Out !g(y)]

In this case, the decomposition was straightforward. In the case of a complex

circuit such as an encryption unit, the decomposition will go through several itera-

tions, each producing a valid implementation of the original CHP implementation.

2.3 Data Encoding

QDI circuits rely on the ability of two connected processes to detect when there is

valid data being transmitted. This detection operation must be possible no mat-

ter what the delay between the two processes is. This operation of transmitting

channels over delay-insensitive channels is achieved using delay insensitive encod-

ings [66]. The 1ofN encoding achieves this by encoding bits information with N

rails [19]. To communicate data between our processes, we typically use 1of 2 or

1of 4 codes for data and 1ofN codes for control.

A 1of 2 code transmits a single bit of information with two wires, the true

wire and the false wire. For a 1of 2 channel X, we name these wires X .t and X .f

respectively. We use a handshake protocol as shown in Fig. 2.1 to transmit data

over these delay insensitive channel. When the condition X .t ∨X .f holds, we say

that channel X is valid. When the condition ¬X .t ∧ ¬X .f holds, we say that the
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channel is neutral. The state when X .f ∧X .t holds is invalid and should never be

reached. The 1of 2 encoding is also known as dual-rail.

In the 2-bit case, we can use a 1of 4 encoding [66]. A 1of 4 channel uses 4

wires to transmit data. Each rail represents one value. Therefore, 4-wires encode

2 bits worth of data. Similar to the 1of 2 channel, the state where Y .d[0] ∨

... ∨ Y .d[3] holds means data is valid and ready to be processed. The condition

where ¬Y .d[0]∧ ...∧¬Y .d[3] holds means a 1of 4 channel is neutral. The main

advantage of using a 1of 4 encoding is that only 1 rails toggles to transmit 2 bits

of data, hence being more energy efficient than a bundle of two 1of 2 channels. In

other words, even though the number of wires in a 1of 4 channel is the same as in

a 2x1of 2 bundle, only half as many of the switch during a transmission.

When we want to transmit M bits, we can bundle multiple bits into a Mx1of 2

channel or a M
2
x1of 4 bundle. The advantage of using this bundle is that a single

acknowledge signal e is shared among the multi-bit data slice. Similar to the 2-bit

channel a M
2
x1of 4 bundle is preferred since only half as many wires switch during

an data transmission compared to its Mx1of 2 counterpart.

2.4 Properties of QDI circuits

The data-driven nature of QDI designs allows a circuit to idle without switching

activity when there is no work to be done. Another advantage of QDI circuits

is the capability for correct operation in the presence of continuous and dynamic

changes in delays [41].

This style of pipelining is entirely data-driven. Without an input token on the
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IN channel, no computation takes place and the circuit is idle, consuming only

leakage power. Composing pipelines out of stages similar to S is as simple as

connecting stages together at channel boundaries, e.g. OUT of one stage to IN of

the next stage, and so on. Synchronization and flow control is handled locally on

a channel-by-channel basis.

This local synchronization behavior also enables average-case system perfor-

mance. The timing of QDI circuits is exemplified in Fig. 2.3, in contrast to syn-

chronous systems, which must define their clock period by the slowest pipeline

stage, the performance of an asynchronous system is set by the critical path of

active pipeline stages or functional units.

Sync
Domain

Async
Domain

Process
1

Process
1

Process
2

Process
2

Process
3

Process
3

Process
4Process

4

Time (discrete) Time (continuous)

clock
period

Handshake
overhead

Figure 2.3: Synchronous and Asynchronous Time Domains

The average performance of an asynchronous circuit is thus governed by the

most often exercised execution paths. This property allowed us to optimize rarely
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used functional units for energy efficiency instead of trying to meet aggressive

performance targets to meet our timing targets. While synchronous designers can

implement complex functional units as multi-cycle units, they must account for the

resultant synchronization and control overheads. In an asynchronous pipeline all

synchronization is handled by the local handshakes, as described earlier—there is

no additional overhead aside from the momentary reduction in performance when

a slow functional unit is exercised.

In addition to being naturally data-driven, QDI circuits operate correctly in

the presence of arbitrary wire or gate delays or other continuous and dynamic

changes on delays. Sources of such local delay variations may include temperature,

supply voltage fluctuations, process variations, noise. This robustness to delay

translates to robustness to variations in the fabrication process, operating voltage

and temperature.

QDI circuits are able to function at different voltages, and can even function

with dynamic fluctuations on the supply voltage. This ability to function at mul-

tiple voltage levels means that a single circuit can be used at high voltage for high

performance and at a low voltage for energy efficiency and low static power.
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CHAPTER 3

PERFORMANCE OF SENSOR NETWORK

MICROCONTROLLERS

If you want to find the secrets of the universe, think in terms

of energy, frequency and vibration

Nikola Tesla

3.1 Energy Performance Pareto Optimal Set

As of this writing, the most important figures of merit of a microcontrollers are:

energy [J] and throughput [Hz]. The throughput measures the number of tasks a

computer can perform within a period of time and it is usually measured by the

cycle time [Hz], instructions per second [MIPS], or tasks per second. Energy refers

to the amount of electrical energy required by the system to complete a task. The

energy of the system is given by Eq. 3.1, where P is the power in Watts and E is

the energy in Joules.

E =

∫ t

0

P dt (3.1)

If we assume a relatively constant power draw, then we can compute the trans-

ferred energy by using Eq. 3.2. On one hand, reducing the time to complete a task

reduces the energy of the system. On the other hand, the most common practices

to reduce the cycle time are: increasing the system voltage, which has a quadratic

relationship to the energy, and reducing the effective resistance of each circuit,

which is inversely proportional to the energy transferred to the system.
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E = V I · t = V 2

R
· t (3.2)

These design constraints oftentimes leads to designers aggressively reducing

energy during active computation at the cost of performance [62]. It is very difficult

to achieve energy reduction without having a substantial cost cost in performance.

Our goal is to achieve high performance and low energy, since the even increasing

application requirements and high cost of communication requires an increase on

the computation performed locally.

Instead of evaluating a global function that encompass both objectives, we

use Pareto optimality, which describes a set of efficient solutions with multiple

(oftentimes conflicting) objective functions. In the Pareto optimal set of design

configurations, each member has the non-dominated property: for each set mem-

ber, there are no members of the universe set of configurations which outperform it.

While Pareto optimality has been used for a long time in economics [14], computer

science and other engineering fields have also benefited from it.

Fig. 3.1 shows an example of the energy-performance distribution of a set of

elements. The red line represents the Pareto optimal set of all the elements in the

space. Each of the elements on the Pareto optimal set is better in throughput,

lower in energy or both than other elements in the set. The Pareto front is also

known as the Pareto frontier, the Pareto optimal, and the Pareto dominant set.
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the pareto optimal set of the element space

3.2 Mote Lifetime Model

We adapted an analytical model that captures how the architecture of a generic

mote system affects battery lifetime from the work of Jung et al. [26]. The authors

of the original model propose a semi-Markov chain formulation of the power state

transitions. In Sec. 6.4, we augment this model to analyze the impact of multiple

architectures of a cryptographic system on the battery lifetime. Our adapted model

has the following properties:

• Ergodicity: The mean value of all quantities is known by observation of a

large enough sample.

• Event arrivals follow a Poisson distribution.

• Sensing, processing and transmission times are independent and identically

distributed with the same arbitrary distribution.
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Fig. 3.2 shows our semi-Markov chain model for a generic cryptographic WSN

mote’s power states: Sensing (S1), Processing (S2) and Transmit or TX (S3).

In our model, we assume the processing and communication steps finish execu-

tion as fast as possible, i.e. they never transition to a low-energy mode when data

is available to compute. α represents the probability that we will transmit data

after processing. Fig. 3.3 shows a power trace for a sample WSN execution. X,

Y , and Z represent the average sensing time, the average processing time, and the

average communication time respectively, and the inter-arrival time is 1/λ.

Sensing
S1

TX
S3

Processing
S2

1

1-α

α1

Figure 3.2: Semi-Markov Chain for cryptographic WSN Mote

S1S1 S1S2 S2 S3
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Figure 3.3: Mote Power Profile
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The total energy spent across all states is defined in Eq. (3.3). Note that

Etotal cannot exceed the energy provided by the mote battery source. Each Ei

represents the energy consumption of a particular state, where pi is the steady

state probability of being in state Si, ti is the total time spent in Si, and Pi is the

power consumed by Si.

Etotal ≥ E1 + E2 + E3 (3.3)

Ei = tiPi (3.4)

Given a long enough time period, T , the total time spent at state Si can be

approximated as limt→∞ ti = pit. Therefore, Ei = pitPi. Let πj be the stationary

probability of the Markov chain, which is the frequency of visiting each state over

an infinite execution. pij is the probability of a transition from Si to Sj. πj can be

interpreted as the proportion of transitions into state j.

πj =
∑
i

πipij,
∑
j

πj = 1 (3.5)

The probabilities pij can be obtained from our model in Fig. 3.2, and the

equations can be written in matrix form, where row indices represent source states

and column indices represent end states:

[
π1 π2 π3

]
0 1 0

1− α 0 α

1 0 0

 =

[
π1 π2 π3

]
(3.6)
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We can then solve the resultant system of equations represented in Eq. (3.6)

and the latter half of Eq. (3.5) to obtain the following:

π1 = π2 = (2 + α)−1 π3 = α(2 + α)−1 (3.7)

The Markov chain model allows us to express pi as follows, where µi is the

mean time spent in Si before making a transition—X, Y , and Z, respectively:

pi =
πiµi∑
j πjµj

(3.8)

Equations (3.3), (3.4), and (3.8) allow us to solve for tlife as a function the aver-

age time spent in each state and the probability of state transition from Processing

to Transmit, α.

Etotal ≥ t
µ̄1P1 + µ̄2P2 + αµ̄3P3

µ̄1 + µ̄2 + αµ̄3

(3.9)

tlife ≤
Etotal(X + Y + αZ)

µ̄1P1 + µ̄2P2 + αµ̄3P3

(3.10)

The state S1 corresponds to the idle state where the activity factor is quite

low in comparison to that of states S2 and S3. In state S1, a QDI microcontroller

is effectively clock-gated due to its data-driven nature. As such, the static power

consumption of is a reasonable proxy for the power consumption in S1. Assuming

that X ≫ Y, Z, we approximate the average sensing time X as the inter-arrival

time 1/λ. We can rewrite Eq. (3.10) as:

tlife(λ) ≤
Etotal(1 + λ(Y + α(µ̄2))

P1 + λ(µ̄2P2 + α(µ̄3PT ))
(3.11)
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CHAPTER 4

ASYNCHRONOUS POWER GATING

Beware of little expenses. A small leak will sink a great ship

Benjamin Franklin

In this Chapter, we present a summary of power gating techniques in the con-

text of asynchronous circuits. Furthermore, we explain the minimum conditions

and requirements to implement power gating in asynchronous circuits and present

detailed implementations of different power gating schemes.

Power gating is perhaps the single most important tool circuit designers have to

combat leakage. These techniques increase the effective resistance of leakage paths

by adding sleep transistors between logic transistor stacks and power supply rails.

Power gating also enjoys many of the benefits obtained from transistor stacking.

Oftentimes, these power gating or sleep transistors are shared among multiple logic

stacks to reduce the number of leakage paths as well as area overheads. Sharing

the transistors effectively creates two new power nets: Gated-Vdd (gvddv) and

Gated-Ground (gvssv), which replace VDD and GND for power-gated logic stacks.

gvddv is connected to VDD using a head sleep transistor and gvssv is connected to

GND using a foot sleep transistor.

4.1 Pseudo-Static Logic Overview

The production rules for an operator with a pullup network expression pun, pull-

down network expression pdn, and output node z are shown in Program 4.1:
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Program 4.1 Pullup and Pulldown network of a CMOS operator

pun → z↑
pdn → z↓

Such an operator is non-interfering and combinational if pun ≡ ¬pdn. The

weaker constraint of pun| pdn ≡ true, denotes a non-interfering, dynamic oper-

ator. Adding a staticizer to the output node, z, of a dynamic operator ensures

the output is always driven. Such an operator is known as a pseudo-static gate.

An asynchronous circuit is comprised of a mix of combinational and these pseudo-

static gates and operators.

PUN PUN

PDN PDN

VDD

VDD

VDD

z z zz

M4

M3

M1

M2

(a) (b)

Figure 4.1: (a) Pseudo-Static CMOS Gate, (b) Weak Feedback Inverter

An implementation of a generic pseudo-static operator is shown in Fig. 4.1a.

The statizicer consists of two cross-coupled inverters attached to node z. Note
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that there is always opposition to any change in z due to the feedback inverter.

To ensure correct operation, the transistors of the feedback inverter must be sized

to be weaker than the logic stacks of the operator. Furthermore, the feedback

transistors add parasitic capacitance to the output node. To mitigate this effect,

each feedback transistor is split in two, as shown in Fig. 4.1b. The feedback

stack now consists of a minimum sized transistor closer to the output, M1(M2),

and a long transistor closer to the power rails, M3(M4). In order to reduce the

load on node z, the gates of the long transistors, M3(M4), are usually connected to

VDD(GND) or to Reset( Reset).

4.2 Non-State Preserving Power Gating

Non-state preserving techniques destroy the state by allowing internal nodes to

uniformly drift towards one of the power rails. The general class of power-gating

techniques has various implementation methodologies that include Cut-Off (CO),

Multi-Threshold (MTCMOS) [20], Boosted-Gate (BGMOS), and Super Cut-Off

(SCCMOS).

The primary disadvantage of these techniques is that the state of internal nodes

is lost. Fig. 4.2 shows, the implementation of the Cut-Off power gating technique

using a foot sleep transistor inputs to the first stage while idle are logic, and the

output.

Any of the previously discussed non-state preserving techniques can be ap-

plied to pseudo-static logic. However, waking up a circuit without resetting all

its pseudo-static elements into known, safe states could result in incorrect circuit

behavior, or even the potential for stable short-circuits between power rails.
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Figure 4.2: Cut-Off (CO) power gating using a foot sleep transistor, which is shared
by several logic blocks. The output nodes drift to gvssv, which itself drifts towards
VDD.

This problem is not unique to power gating—in fact, it is a concern during the

initial power up of asynchronous circuits, which use pseudo-static gates. Fortu-

nately, the addition of reset transistors to initialize the appropriate circuit nodes

is a viable solution. In the case of power up, the signals which drive the gates

of these reset transistors are generated off-chip. However, initial power up is a

global event. As the off-chip environment is unaware of the entire internal state of

the chip, generating reset signals for each individual power gated circuit off-chip

would prove to be practically impossible, even just considering package pins as a
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limitation.

To ensure correctness and safe operation, each power gated circuit requires its

own self reset circuitry. In our asynchronous design methodology, we use transistors

both in series and in parallel with pullup and pulldown stacks. To control the

parallel and series reset transistors, we use pReset and sReset signals and their

complements, respectively. While the order and delay between asserting pReset

and sReset is flexible, pReset must be deasserted before sReset to prevent any

short circuits between power rails. A typical reset sequence is as follows:

1. Assert pReset, sReset, and their complements and hold them until all the

circuit output nodes have been charged to their appropriate safe states.

2. Deassert pReset and its complement.

3. Deassert sReset and its complement.

Note that in order for the self reset circuit to be QDI, it would have to instru-

ment every output node in order to determine whether or not it has reached the

appropriate safe state during step 1 above. This endeavor quickly becomes very

costly in transistor count, area, complexity, and power. A similar argument applies

for determining the appropriate delay between steps 2 and 3 above. As such, the

self reset circuit we propose is not QDI, but instead relies on the timing assumption

that a delay line, tailored to the circuit being reset, is sufficient to guarantee safe

reset of all internal circuit nodes. Again, a similar argument involving a delay line

between steps 2 and 3 applies.

Upon deasserting the sleep signal, i.e. waking up the circuit, the self reset

circuitry will assert sReset and pReset in that order, then deassert them in reverse
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Figure 4.3: Self reset circuit behavior immediately after sleep goes low.

order as seen in Fig. 4.3. The timings between these transitions are controlled

by delay lines. Note that pReset should be held long enough to account for the

charge/discharge latency of the local supply rails—i.e. gvssv—and the worst case

reset latency. Depending on process variations, it may be desirable to further

increase the hold time of pReset. In fact, it is advisable to layout the delay line

as close to the logic as possible in order to replicate localized systematic process

variations. Once the self reset sequence is complete, a safe signal is raised, as seen

in Fig. 4.3a.

From the time the circuit has been power gated until the circuit completes its

internal self reset, the outputs of the gated circuit are undefined. If the rest of

the pipeline is operating, these undefined outputs should not corrupt the rest of
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the system, particularly pipeline stages which have been fully woken up. This im-

pacts both the pipeline stage inputs—through acknowledge signals—and outputs—

through data signals. Isolation circuits are introduced to make sure that all output

signals from the power gated block remain in a well-defined state. Adding isola-

tion circuits to the input of a stage prevents signals from interfering with the self

reset of a stage, and isolation circuits on the output prevent any glitches from

propagating to other pipeline stages during the self reset stage.

4.3 State Preserving Power Gating

State preserving power gating techniques reduce leakage while retaining state. The

tradeoff between these techniques and non-state preserving techniques is that they

are not as effective as at reducing leakage currents.

The two main state preserving power gating techniques are Variable Threshold

(VTCMOS) and Zig-Zag Cut-Off (ZZCO) [20] VTCMOS has the disadvantage of

requiring a bias voltage generator, as well as the use of triple well process.

Our state preserving power-gating scheme is based on the Zig-Zag Cut

Off (ZZCO) power gating, it offers a good tradeoff between power savings and

performance degradation for this class of power gating. As in non-state preserv-

ing techniques, ZZCO introduces two power nets: Gated-Vdd (gvddv) and Gated

Ground (gvssv). Rather than gating every logic state in the same fasion, the se-

lection of the head or foot transistor is governed by the desired logic level of the

output node. As shown in Fig 4.4, gvddv i and GND are used as power rails for

logic blocks with a logic 0 output when idle and VDD and gvssv for blocks with

with logic 1 output when idle.
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Figure 4.4: Zig-Zag Cut-Off (ZZCO) using a pair of sleep transistors, which are
shared between several logic blocks. The configuration of sleep transistors restores
the otuptu nodes to the appropriate idle state values.

For asynchronous circuits, in idle mode, we know there are no inputs and that

all logic blocks have finished computation. Therefore, each individual logic block

is waiting for data. By analyzing the handshaking expansions of each process, we

can ascertain the value of most signals in the idle state. One exception involves the

case of two-phase handshakes where the number of handshakes is not guaranteed

to be even. Nevertheless, for most cases, we can use Zig-Zag power gating by

connecting all the logic blocks whose output is logic 1 to gvssv and all the nodes
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whose output is logic 0 to gvddv .

In order to efficiently power gate pseudo-static operators, we gate the forward

inverter of the staticizer in addition to the logic stacks depending on the idle state

output of the logic. Essentially, pseudo-static Zig-Zag Cut-Off (ZZCO) power

gating adds sleep transistors to the logic stack and the feedback transistors of

pseudo-static operator shown in Fig. 4.1b.

We can reduce the leakage through the feedback inverter by connecting the

gates of M3 and M4 to gvddv and gvssv, as shown in Fig. 4.5a. Alternatively,

their gates could be connected to the sleep signal directly, as in in Fig. 4.5b, but

the area penalty would be high because the sleep signal would need to be routed

individual staticizers, as opposed to just the shared sleep transistors. We refer to

the technique of driving the gates of M3 and M4 with gvddv and gvssv as Zig-Zag

Cut Off with Weakened Staticizers (ZZCO-WS).

Note that the only difference between ZZCO and ZZCO-WS is between which

signals drive the gates of M3 and M4. Thus, the area overhead for implementation

of ZZCO-WS versus ZZCO is negligible, as all the supply nets—i.e. gvssv, gvddv,

GND, and VDD—are locally accessible to each layout cell.

We chose Cut-Off (CO) and Zig-Zag Cut-Off (ZZCO) as our non-state holding

and state holding power gating techniques, respectively, as neither requires bias

voltages or multiple-well capabilities. The complexity and trade-offs of bias voltage

generation made it unattractive to implement. For example, even though SCCMOS

offers better leakage reduction versus CO, the current draw of the bias generation

circuits make SCCMOS viable for only large circuits. In our 90nm technology,

a switched capacitor bias generator, based on the baseline generator from [64],
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Figure 4.5: Zig-Zag Power Gating with Weakened Staticizers (ZZCO-WS) using
(a) Virtual Power Rails or (b) Sleep Signals

consumes an average of 116 µW. As such, power gating schemes which require on-

chip bias generation with conventional circuits are inappropriate for any ultra-low

power applications with static power in the sub-microwatt regime.

As seen in Fig. 4.6, ZZCO reduces leakage power by an average of 20%. If we

weaken the staticizers (ZZCO-WS) during idle time as discussed in section 4.3, we

save an additional 5%. However, the maximum savings in power come from using

CO power gating, as it offers a 82% reduction in leakage power on average. The

power reductions from ZZCO and ZZCO-WS are similar in both 65nm and 90nm

technologies; however, CO power gating saves an additional 8% of static power in

65nm versus 90nm.

As for performance, Fig. 4.7 shows the degradation for different pipelines.
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Figure 4.6: Static power consumption of 4 pipelines. Each pipelined is power gated
in isolation, and results are normalized to a baseline implementation with no power
gating.

ZZCO has the most pronounced effect on average operating frequency with a 29%

degradation in 90nm and a 28% degradation in 65nm. ZZCO-WS is slightly bet-

ter with degradation of 24% and 21% in 90nm and 65nm, respectively, and CO

has the least impact of the three schemes, averaging a 23% degradation in 90nm

and a 20% degradation in 65nm. Using gvssv and gvddv to drive the gates of the

series transistors instead of GND and VDD weakens the feedback stack, reducing

34



leakage as well as the opposition to changing the output node z, which origin of

the performance improvements.
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Figure 4.7: Average operating frequency of 4 different pipelines. Each pipelined is
power gated in isolation, and results are normalized to a baseline implementation
with no power gating.
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CHAPTER 5

ULSNAP: ULTRA-LOW ENERGY EVENT DRIVEN

MICROCONTROLLER FOR SENSOR NETWORK NODES

It is not what happens, but how you react to it that matters

Epictetus

WSNs are comprised of many small, low cost nodes or “motes” that gather,

process, and propagate data about their surrounding environment. Typical motes

are comprised of environmental actuators, sensors, a microcontroller, a radio or

other communication interface and an energy supply such as a coin-cell or thin-film

batteries. The on-board microprocessor handles local data processing and control

tasks. Many motes also have the capability of entering a low-energy sleep state

and are oftentimes paired with an energy harvesting system in order to maximize

mote operating lifetime.

Mote deployment lifetimes can exceed several months, making battery life a

crucial metric in this design space. Fortunately, most sensor network applications

are bursty, e.g. only engaging in active execution when sensor data is available

and then returning to a quiescent state. The idle or “sleep” state is oftentimes

significantly longer than the execution period, so minimizing power during this

idle phase is of paramount importance. On the other hand, increasing application

complexity requires greater computational power, forcing more aggressive peak

performance targets for sensor nodes. The high cost of wireless communication

also contributes to increased demand for performance—computing results locally

at a sensor mote is often a better system-level trade-off than wirelessly transmitting

raw data [1]. Hence, a mote equipped with a powerful processor can increase the
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mote lifetime and improve the performance per task.

In order to achieve these goals and fit the bursty computation paradigm, we

implemented the Ultra-low Power Sensor Network Asynchronous Processor (UL-

SNAP). ULSNAP was optimized to be event-driven at both the architectural and

circuit levels. We make use of the QDI family of self-timed, i.e. asynchronous, cir-

cuits described in Chapter 2.1, which are particularly well-suited for event-based

computation as they follow a data-driven computational model.

QDI circuits offer automatic fine-grained activity gating behavior in the absence

of events, reducing power consumption when the circuits are idle. Traditional syn-

chronous systems attempt to solve this problem using various clock-gating schemes,

which introduce complexity and require timing margins to ensure clock stability—

QDI circuits are naturally free of these requirements.

ULSNAP, is targeted at this sensor mote application space. When idle, our

chip consumes only 9 µW with leakage power as the only contributor. It also has

fast wake up time, transitioning from idle to active in only 6.5 ns. When active, the

90 nm test chip delivers 93MHz at 1.2V and 47MHz at 0.95V using 47 pJ and 29 pJ

per cycle, respectively. In both the high performance and the low energy mode,

ULSNAP is Pareto-optimal in the energy-performance space relative to other state-

of-the-art microcontrollers in its class. In fact, ULSNAP can seamlessly operate at

different points on the energy-performance curve by scaling its operating voltage.
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5.1 Event-Driven Architecture

ULSNAP is a 16-bit architecture and has MIPS-like load/store RISC ISA. The

details of the ISA implementation can be found in Appendix B. While ULSNAP’s

ISA is fairly standard, the execution model of ULSNAP is event-driven. The initial

state of the ULSNAP core is a wait state. When an event is triggered, e.g. sensor

data arrives, ULSNAP’s Event Handler (EH) references the Event Register Table

(ERT), which maps each type of event to a program. The EH then initiates the

fetch of the appropriate instruction stream for the program indicated by the ERT

and execution begins. Simultaneous events are handled by arbitration within the

EH. In some cases it is necessary to trigger an event after some delay. We support

this functionality with a timer coprocessor, which contains three decrementing

counters—allowing us to delay up to three events. At a count of zero, an event

is injected into the event queue and is handled by the EH/ERT. Specifying a delay

time is as simple as initializing a counter to the appropriate value.

Each program is terminated by a WAIT instruction, returning the processor to

the wait state. Thus, ULSNAP is in an idle state when no events are available for

processing. Note that there is no explicit power- or clock-gating—idle QDI circuits

only consume leakage power in the absence of data.

ULSNAP naturally exploits the data-driven nature of QDI circuits: during a

quiescent phase, the underlying circuitry simply waits for data to appear. In such

an idle state, no switching activity is present and only leakage power is consumed,

achieving a low power envelope. No power management controllers, or clock gating

techniques are required to support this behavior. In fact, the WAIT instruction is for

architectural bookkeeping only. Even a stalled program experiences the benefits

of QDI circuits. Only the functional units that can make forward progress have
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switching activity—inactive or stalled units only consume leakage power. It is

important to note that even if the core is in a quiescent state it is ready to compute

data—ULSNAP can “wake up” in only 6.5 ns, as detailed in Sec. 5.4.1.

The sequential CHP of the processor core and datapath is shown in Pro-

gram 5.1. We expand some functions as follows: get(n) : r[n], if 1 ≤ n ≤ 14,

get(15) : IN ?, and get(0) : skip. Similarly, in Program 5.1, put(n, v) : r[n] := v

if 1 ≤ n ≤ 14, get(15, v) := OUT !v , and get(0, v) := skip.

5.1.1 Microarchitecture

ULSNAP and its predecessor, SNAP [12], implement a 16-bit load-store RISC ISA

that supports arithmetic, logic, and branching operations. We have a gcc-based

toolchain that allows us to compile and execute arbitrary C code on ULSNAP.

A detailed description of the instructions and its encodings can be found in Ap-

pendix B. Instructions are variable length—one to two 16-bit words. A system level

diagram of the architecture is shown in Fig. 5.1. ULSNAP has a more streamlined

ISA than SNAP, new I/O and timer coprocessors, and an improved memory ar-

chitecture.

The processor state in ULSNAP is composed of 16 general purpose registers,

a PC register, 4 kB of data memory and 4 kB of instruction memory. The FETCH

unit addresses the instruction memory and forwards instructions to the PREDECODE

unit, which then resolves the opcode, source, and destination operands from the

incoming instruction stream. All fields of the instruction are passed to the DECODE

unit, which controls operand flow between the register file (RFILE) and all exe-

cution units. DECODE also controls PC update in the FETCH, and any required
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Program 5.1 Top level CHP of ULSNAP datapath and processing core

i := 0; [i < 15 −→ r[i] := 0; i := i + 1];
pc := INIT PC;
imask↓t
*[

i := imem[pc]; pc := pc + 2
[offset(i .A) −→ offset := imem[pc]; pc := pc + 2
[]¬offset(i .A) −→ skip
]

[alur(i) −→ (v , c) := aluf (get(i .C ), get(i .D), i .A, i .D , c); put(i .B , v)
[]alui(i) −→ (v , c) := aluf (get(i .C ), offset , i .A, i .D , c); put(i .B , v)
[]shift(i) −→ v := shift(get(i .C ), get(i .D)); put(i .B , v)
[]shifti(i) −→ v := shift(get(i .C ), i .D); put(i .B , v)
[]bfs(i) −→ put(i .B , bitfieldset(get(i .C ), get(i .B), offset))
[]loadi(i) −→ put(i .C , imem[get(i .B) + offset])
[]storei(i) −→ imem[get(i .B) + offset] := get(i .C )
[]loadd(i) −→ [memreg = 0 : put(i .C , dmem[get(i .B) + offset])

[]memreg = 1 : put(i .C , external dmem[get(i .B) + offset])
]

[]stored(i) −→ [memreg = 0 : dmem[get(i .B) + offset] := get(i .C )
[]memreg = 1 : external dmem[get(i .B) + offset] := get(i .C )
]

[]jal(i) −→ put(i .B , pc); pc := offset
[]jalr(i) −→ put(i .B , pc); pc := get(i .C )
[]beq(i) −→ [get(i .B) = get(i .C ) −→ pc := pc + offset[]else −→ skip]
[]bne(i) −→ [get(i .B) = get(i .C ) −→ skip[]else −→ pc := pc + offset]
[]bgez (i) −→ [get(i .B){15} = 0 −→ pc := pc + offset[]else −→ skip]
[]bltz (i) −→ [get(i .B){15} = 1 −→ pc := pc + offset[]else −→ skip]
[]schedhi(i) −→ SCHED !get(i .C ),TCOP !sched,TSREG !get(i .B)
[]schedlo(i) −→ SCHED !get(i .C ),TCOP !sched,TSREG !get(i .B)
[]cancel(i) −→ TCOP !cancel,TSREG !get(i .B)
[]ldr(i) −→ memreg := get(i .C )
[]rand(i) −→ put(i .B , lfsr)
[]seed(i) −→ lfsr := get(i .B)
[]wait(i) −→ EXEC ?t ; pc := h[t]
[]setaddr(i) −→ h[get(i .C )] := offset
]

]
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Figure 5.1: ULSNAP Architecture

absolute/relative PC offsets are calculated in the BRANCH execution unit.

In designing the overall microprocessor architecture, we leverage the average-

case performance properties of QDI circuits (Sec. 2.1) and divide the execution

units in ULSNAP into fast and slow groups to improve the overall energy efficiency

and performance. Operands and results are transported between execution units

and the register file (RFILE) by four shared buses: X and Y for register source

operands, Z for immediate values, and W for results. Frequently used execution

units (RFILE, JUMP, BRANCH, LOGIC, ARITH, SHIFT, DMEM) are connected directly to

these operand and result buses. Less-critical units, i.e. the LFSR, ISTORE, TIMER,

and ERT units, are decoupled from the buses by a single, dedicated access unit

(SLOW) as shown in Fig. 5.1.

This effectively creates two sets of operand and result buses, logically and elec-

41



trically separating the execution units into fast and slow groups. This has the ben-

efit of significantly shortening the bus wires and reducing per-bus capacitance. For

example, we estimate that a monolithic X bus would have in excess of 0.4 pF/wire

of total capacitance, accounting for both coupling and intrinsic capacitance. In-

stead the capacitance is split in two segments of 0.17 pF/wire and 0.2 pF/wire for

the slow and fast buses respectively. Access to the slow buses incurs an extra

overhead of 2 gate delays and an intermediary 0.1 pF/wire.

While the total system capacitance is greater than the estimated monolithic

bus capacitance, most of the time the slow units are not accessed. Most operations

use only the fast units and therefore only see 0.2 pF. This increased performance

for common operations offsets the added latency of access to the slow units and

improves overall system performance as we are improving the average case exe-

cution paths. The non-uniform run times for the execution units poses no syn-

chronization problem since our self-timed methodology is robust to gate and wire

delays (Sec. 2.1). We quantify the relative difference between the slow and fast

execution paths using a synthetic benchmark, discussed in Sec. 5.4.1.

5.1.2 Circuit Implementation

We make use of a hybrid approach at the circuit level, combining two different

QDI logic families: precharge buffer templates [32] and control-data decomposi-

tion. These two families fall at opposite ends of the spectrum of pipeline stage

complexity. Precharge buffer pipeline templates, such as PCHB and PCFB, were

widely used in the MiniMIPS processor [37]. Each PCHB/PCFB stage typically

implements a function of small enough complexity that it can fit into a single nMOS

pulldown network, as illustrated in Fig. 5.2. This compilation style yields high-
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performance stages with short cycle time. However, a reasonably complex function

must be decomposed into a pipeline of several PCHB/PCFB stages, resulting in a

long latency for a single data token to travel through the entire pipeline, though

maintaining a high token throughput.
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Figure 5.2: ULSNAP Execution Unit Template

Conversely, control-data decomposition, used in the Caltech Asynchronous Mi-

croprocessor [40], typically aggregates computation into a single pipeline stage.

While the cycle time of such a stage is higher than the equivalent PCHB/PCFB

pipeline, the overall latency and energy consumption are less. Circuits compiled

using either of these methods are completely inter-operable, which allows the de-
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signer to tailor the latency/cycle time of all computational units individually.

We implemented high throughput execution units such as the ARITH and BRANCH

units using the PCHB/PCFB templates. Fig. 5.2 depicts an example bit slice of

such an execution unit. Given the small amount of computation these units per-

form, the PCHB/PCFB pipeline is at most 2 stages. This represented a reasonable

tradeoff between throughput and energy/latency for these stages. The fetch loop

and predecode units are compiled using the control-data technique, which allowed

us to minimize the latency of key computations such as updating the PC.

As described earlier, all the functional units are connected by operand (X,

Y , and Z) and result (W ) buses, each of which is a shared channel. Channels

only provide synchronization between a single produce and consumer, i.e. they

are not multicast. Some additional hardware is necessary to preserve the local

synchronization handshakes described in Sec. 2.1, so we wrapped each unit with

bus-to-channel (B2C) and channel-to-bus (C2B) interfaces, which are controlled by

the DECODE unit. As an example, Prog. 5.2 the B2C interface for the X bus and

the C2B interface for the W bus in CHP1:

Program 5.2 Bus-to-channel and channel-to-bus programs

B2C ≡
*[[Readk]; xk↑; Readk ; Lik !(X ?); xk↓]

C2B ≡
*[[Writek]; xk↑; Writek ; W !(Lok?); xk↓]

Fig. 5.2 shows a PCHB-style functional unit with B2C and C2B interfaces. The

internal PCHB pipeline stage accepts input on channel Lik and produces out-

puts on channel Lok . The Readk and Writek are dataless channels connecting the

DECODE unit to each of the B2C and C2B interfaces. We have expanded the above

1A short summary of CHP can be found in the Appendix
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CHP descriptions to include an internal state variable xk , which we discuss later.

By interfacing with the appropriate Readk or Writek channel(s), the decode unit

can guarantee each functional unit mutually exclusive access to the appropriate

operand and result buses.

Unlike all other functional units, the DECODE unit is not implemented with

PCHB/PCFB or control-data style pipeline templates, as it must provide resource

allocation functionality. To address this specific need we make use of Pipelined Mu-

tual Exclusion (PME) [35]. In short, by using PME the DECODE unit synchronizes

the fetch and execution units while allowing the fetch loop to continue execution as

the execution unit(s) processes the previous instruction. This simple optimization

allows us to introduce concurrency with little overhead.

PME can be described as follows: given a set of mutually exclusive ac-

tions (A1, A2, . . . , An) and a command channel to execute each of those actions

(C1, C2, . . . , Cn) we can guarantee mutual exclusion by Program 5.3.

Program 5.3 Pipelined mutual exclusion

pi ≡
*[[Si]; xi↑; Si ; Ai ; xi↓] ∥
*[[Ci ∧ (∀j : j ̸= i : ¬xj )]; Si ; Ci]

Note that the above CHP program consists of two separate programs running in

parallel, synchronized by synchronization channels S1, S2, . . . , Sn. The first process

of pi is structurally identical to that of the B2C and C2B processes, which essentially

replace Ai with the appropriate channel actions on the bus and local channels. In

the PME context, the set of state variables x0, x1, ..., xn behave as a distributed

synchronization lock that reserves resources when executing an action, e.g. the

shared bus channels.
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The key feature of PME is how it allows a control process communicating on

the command channels Cj , in this case the decode logic, to continue execution

without waiting for the commanded action Aj to complete. To illustrate this, let

us assume that the action Ak is desired, and that it is the first action, i.e. there

are no current actions being performed. The controlling process initiates a channel

action on Ck. The wait condition [Ck ∧ (∀j : j ̸= k : ¬xj )] is met, so a channel

action on Sk is initiated. The next wait condition [Sk] is now met, reserving the

shared resource by raising xk. At this time, the channel actions on Sk and Ck are

allowed to complete, freeing the controlling process to continue work.

Synchronization happens when the DECODE unit tries to execute the next action

by initiating the appropriate command channel action on Ci. At this point, the

controller must wait for all locks xj to become false, which in our example will

only occur once Ak has finished. By decoupling the DECODE unit from function

unit action completions, we can begin decoding an instruction while the previous

instruction is being executed, adding additional concurrency to our execution.

5.2 Memory Architecture

ULSNAP implements a Harvard memory architecture, with a different set of ad-

dress and data buses for instruction memory and data memory. Data width and

instruction width are both 16-bits, hence both memories are 16-bit aligned.

ULSNAP has 8 kB of memory, divided equally into instruction and data mem-

ory. The symmetric size of the memories was just for convenience, since they do not

share the same address space. Both memories are organized into 8 banks as shown

in Fig 5.3. A memory operation is handled by a SPLIT process that addresses the
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correct bank using the least significant bits of the address. The SPLIT process was

compiled using a full buffer reshuffling (PCFB) that allows multiple outstanding

operations—up to one per bank. Read operations make use of the MERGE process,

which selects the appropriate LocalDataOut bus and ships the result back to the

core. In the case of contiguous memory access or small strides, we can leverage

our ability to have multiple outstanding memory operations to different banks. In

this way the PCFB reshuffling enables us to reduce performance requirements for

each bank without starving the processor core.

Merge

... Ctrl

Split

Bank 0 Bank 1 Bank 6 Bank 7

LocalDataOut

Data

3

3
DataOut

11 Address

Data and
8 Address Bits

Banks are addressed using LSB bits of the address. Only active banks consume dynamic power during a memory

request.

Figure 5.3: SRAM Organization

In order to further reduce static power, the SRAM bit cell relies on long channel

devices to reduce leakage. The total SRAM leakage is 4µW for all 8 kB of memory.

For reference, a direct port of the original 180 nm SNAP memory to our more

modern 90 nm process consumes more than 200µW of leakage power. Note that

this reduction of static power between designs does not come at the cost of a
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significant latency increase. In fact, due to the multiple outstanding requests

enabled by our use of PCFB-reshuffled logic, the average SRAM access latency of

ULSNAP is similar to that of a single cycle of the microcontroller core.

Each bank is divided into 64 rows and 4 columns, each of which is 4B (2 words)

wide. We chose this configuration to allow for relatively short bit lines. Shortening

the bit lines reduces switching capacitance and improves noise margins. Reads

from the SRAM are fully QDI, since a read operation will eventually cause a bit

line transition which can be detected. However, we cannot observe the state of

a write operation by only inspecting the bit lines. In order to provide a timing

bound for a write operation, we build a delay-line-like structure out of a dummy

SRAM column, placed on the side of the SRAM farthest from the word line drivers.

During a write operation on the SRAM, we perform a read on this dummy column

and wait for its transition to be detected.

The placement of the dummy column at the end of the word line accounts for

the maximum possible delay on the word line. Furthermore, since this dummy

column is identical in every other respect to actual SRAM columns, the bit line

capacitance charge/discharge timing characteristics are comparable. The key as-

sumption is that reads take longer than writes, padding our delay margins. This

configuration allows us to have a dummy delay-replica-loop that approximates the

delays associated with the physical design as well as global and systemic process

variations.
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5.3 Coprocessors

5.3.1 Timer Coprocessor

Providing efficient hardware support to schedule events in the future is crucial

in order to maximize the amount of time the ULSNAP core can remain idle,

using only leakage power. To this end, both SNAP and ULSNAP implement

timer coprocessors. The timer coprocessor in ULSNAP is composed of three 24-bit

decrementing counters or “timers.” Each counter can be independently initialized

to a positive integer through the use of two custom instructions in the ULSNAP

ISA: SCHEDHI and SCHEDLO. These instructions set the most and least significant

bits of each counter, respectively. When a timer expires, i.e. the counter has been

decremented to 0 from the initial value, the timer coprocessor injects an event into

the Event Handler (EH) event queue.

The original SNAP timer coprocessor was constructed from a single always-

running clock or “tick generator” and three decrementing counters. Gating the

clock signal connection to each of the counters enabled or disabled each of the

counters, providing three controllable timers. While simple to implement, this

approach did not leverage a key benefit of asynchronous circuits: intrinsic activity

gating. The use of a continuously running clock is power inefficient, especially

when considering the required distribution to three counters.

ULSNAP makes an improvement to this design by implementing per-timer,

stoppable clocks for each one of the three counters. This enables per-timer activity

gating and reduces the amount of global wiring. Furthermore, the frequency of each

one of the clocks is configurable, allowing for different wait times and wait time
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precision. Each of the timers is completely decoupled from the others providing

significant savings in power consumption. Program 5.4 shows the sequential CHP

for the timer coprocessor. Note that the program must issue a SCHEDHI instruction

before an SCHEDLO instruction, otherwise the timer may deadlock. In order to avoid

a race condition when the core cancels a timer that just expired, the timer inserts

a token into the execution queue whenever a CANCEL operation is processed.

Program 5.4 CHP for the timer coprocessor

*[ TCOP?op;
[]op = schedhi −→ SCHED?temp[16 : 0], TSREG?
[ op = schedlo −→ SCHED?temp[15 : 0], TSREG?t ;

enable[t]; SYNC[t]!temp;
[]op = cancel −→ TSREG?t ; CANCEL[i]!
]

]

<∥ : i : 3 :

s[i] := off

*[ [CANCEL[i] ∧ s[i] = off −→ CANCEL[i]?

|CANCEL[i] ∧ s[i] = on −→ CANCEL[i], EXECt[i]!, s[i] := off

|DEC[i] ∧ s[i] = on −→ timer[i] = timer[i]− 1; DEC[i]?
[timer[i] = 0 −→ EXECt[i]!, s[i] := off
[]timer[i] > 0 −→ DECREMENT[i]!
]

|SYNC[i] −→ SYNC[i]?(timer[i]); s[i] := on;
DECREMENT[i]!

]

]

∥
Tick Gen[i] ≡
*[ [DECREMENT[i]?; DEC[i]! ]

>

A detailed picture of each timer can be seen in Fig. 5.4. Each timer has a

tick generator (Tic Gen) that generates tokens on a dataless asynchronous channel

(dec) at a user-configurable frequency. The dec channel serves as the command

to decrement the counter. The ULSNAP core configures, sets, starts, stops, and

resets each timer via the ctrl channel. As timer commands can arrive even if the
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Figure 5.4: Timer Implementation

timer is active, especially if the timer is being reconfigured or reset, the ctrl and dec

channels must be arbitrated. The resulting ctrla and deca channels are mutually

exclusive. The Ctrl process is responsible for initializing the decrementing counter,

enabling/disabling the Tic Gen process, as well as detecting when the counter is

zero and injecting an event into the Event Handler.

The decrement counter Fig. 5.4 is implemented as a serial pipeline of n-bit

decrementer processes (Dec), each of of which corresponds to a single bit of counter.
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The Ctrl process can reset and initialize each unit via a reset channel, which is

connected to each decrementer process. Each Dec process stores two variables: b,

the actual value of the counter bit, and z, a bookkeeping value which is true if

all bits more significant than the current position are zero. The z value enables

two key features. The first is to minimize the number of exercised Dec units while

decrementing—if all higher order bits are zero, there is no need to interact with

them thus saving power. Secondly, because each Dec unit has information about

itself as well the higher bits relative to itself, the decrement action is constant

response time, similar to the empty pipeline detection counter of [53]. If a decre-

ment operation must borrow from a more significant bit, a channel action takes

place on the dec channel. The next Dec process responds with the appropriate z

value on the is zero channel to keep all the state updated. As there is no clock, a

constant-time asynchronous cycle is of great importance in a decrementing counter

used as a timer.

5.3.2 I/O coprocessor

Off-chip communication is handled by an I/O coprocessor. In comparison to SNAP,

ULSNAP’s I/O coprocessor has been made more modular, enabling easy support

of different serial protocols. Currently, we implement two off-chip serial protocols

in the I/O coprocessor: SPI, and a simple asynchronous serial protocol similar to

that shown in Fig. 2.1. Communication between the I/O coprocessor and the core

is done through an I/O-mapped register (R15). Whenever an I/O event occurs, an

token is placed into the Event Handler queue and the associated data is pushed

into the input queue of R15.

The SPI unit can only be used in master mode. The frequency of the SPI clock
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can be configured through an off-chip delay line. We support all SPI clock polarity

(CPOL) and phase (CPHA) modes, each of which can be configured by initializing

the SPICFG register in the I/O coprocessor to the appropriate values. In order to

avoid a race condition between writing to the SPICFG register and the transmit

(SPITX) or receive (SPIRX) registers, the I/O coprocessor inserts an event into the

Event Handler’s event queue whenever the configuration is changed. The SPI unit

can be configured in transmit, receive or duplex mode. To preserve the event-

driven architectural model, the I/O coprocessor will inject an event into the Event

Handler queue whenever a word is received through the SPI or serial unit. The

throughput of the serial asynchronous interface of the I/O coprocessor is a 16 bit

serial message every 2 cycles (130 ns). The throughput of the serial I/O interface

is limited by our padframe design and the capacitance of the PCB traces.

5.4 Evaluation

5.4.1 Testchip

ULSNAP is the successor to the SNAP processor and is fabricated in a more mod-

ern 90 nm low-power CMOS process using a full-custom layout flow. When ap-

propriate, we make the relevant comparisons between a simulated 90 nm ULSNAP

and our ULSNAP design. The processor core alone contains 122k transistors in

an area of 0.312mm2. Including the memories, the transistor count is 592k in an

area of 0.844mm2. All reported power measurements include the memory power

consumption. A photo of the die is shown in Fig. 5.5. Our test chip included 3

designs, ULSNAP is located on the southeast quadrant of the test chip.
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A picture of the layout is shown in Fig. 5.6. The layout is roughly divided in

3 rows. On the top row we placed the FETCH, RFILE, and the fast group of the

execution units. On the middle row, we placed the DECODE unit. The bottom row

includes the I/O and timer co-processors as well as the slow group of the execution

units. The X, Y, Z, and W buses run horizontally and “tap” each one of the fast

group of execution units and the RFILE. The buses of the slow execution units

connect to the to the main buses through a vertical bus.

Figure 5.5: Die photo

Figure 5.7a shows a picture of the PCB board used to program and evaluate

the test chip. The board can be connected to an Arduino Mega as a shield. The

board has several modes of operation, on one hand, it can be connected to a high

precision bench equipment to perform measurements and analysis. Alternatively,

it can operate on stand-alone mode, where internal sensors work together with an
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Figure 5.6: Layout Photo of core without memory

Arduino Mega board in order to bootstrap and benchmark applications running on

the board. Figure 5.7b shows the PCB connected as an Arduino shield operating

in stand-alone mode. In this mode, the USB connection only provides power to the

board, all the benchmarks are loaded on an SD card, and the results are displayed

on the LCD. More details of the board are in Appendix C.

5.4.2 Power, Energy, and Throughput

To evaluate the static power consumption, we tested 10 separate ULSNAP chips

with empty event queues, i.e. there was no activity. Since QDI circuits provide

automatic fine-grained activity gating, and our design does not contain any busy

loops or waits in the absence of events or instructions, leakage power is the only

source of power consumption while idle. Note that this is not an explicit power-

gated state and that there are no explicit hardware power management structures

in ULSNAP—although extending the design to include them is possible as de-

scribed in Chapter 4. Fig. 5.8 presents measured static power consumption from
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(a) PCB photo

(b) Portable Test Board

Figure 5.7: Test, simulation, and measurement board

all leakage paths, and also shows how static power scales with VDD.

To evaluate the processing performance of ULSNAP when active, we developed

micro-benchmarks that stress the processor with ALU and memory operations. We

measured the performance and energy for our micro-benchmarks while varying the

supply voltage from 1.2V to 0.95V. As ULSNAP has no clock, we have no direct
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Figure 5.8: Static power consumption

control over the operating frequency save for changing VDD. Note that this voltage

and “frequency” scaling is a natural benefit to our use of QDI circuits and requires

no explicit hardware support or design effort.

We report power and performance characteristics in Fig. 5.9. Our 90 nm test

chip delivers an average of 93MHz at 1.2V using 47 pJ per cycle. These numbers

are an average of measurements across 17 different ULSNAP cores with standard

deviation 5MHz and 0.5 pJ. ULSNAP can be also run in low energy mode with

VDDat 0.95V. In this mode, it only uses 29 pJ per cycle while delivering 47MHz

of integer operations.

Fig. 5.9 also shows that ULSNAP automatically adjusts to multiple voltages,

allowing it to operate at different points on the energy-performance curve. A
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smart application could control the supply voltage to ULSNAP using a digitally

controlled power source/regulator to optimize the energy-performance trade off

during the lifetime of the sensor mote. While this approach is possible on syn-

chronous circuits, it requires a focused design effort to close timing.
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Figure 5.9: Performance-energy trade off

We also include an evaluation of six standard benchmarks for embedded pro-

cessors [45] implemented in C and compiled to our custom ISA with our gcc flow.

Performance and energy measurements at 1.2V for each benchmark are shown in

Table 5.1.

Finally, we developed a micro-benchmark to stress the timer coprocessor with

the main core idle—this is possible as the three timers are decoupled from the main

core. Our measurements show that each timer can reach average frequencies up to

270MHz while consuming only 0.85 pJ/cycle/timer. While each timer’s individual

frequency is configurable, in our testing we ran them all at the same frequency.
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When idle, ULSNAP’s timer coprocessor uses only 300 nW at nominal VDD, as

compared to 400 µW for the coprocessor in [12].
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Figure 5.10: Energy-performance comparison of processors in high performance
mode. The dotted line connects the microcontrollers on the Pareto-optimal set

We compared ULSNAP against various state-of-the-art microcontrollers

[2,11,21,63,67] and present the results in Table 5.2. Fig. 5.10 and Fig. 5.11 shows

the comparison of the microcontrollers on the energy-performance design space.

The Pareto-optimal set is highlighted by a dotted red line. ULSNAP is Pareto-

optimal in the energy-performance space in both low-energy and high performance

Table 5.1: Benchmarks

Task Perf [tasks/s] E [nJ/task] Input
CRC4 3.19× 105 12 16b
Tiny Encryption (TEA) 8.41× 103 490 64b(data)
Int Average 6.37× 103 652 2kB
MinMax 4.73× 103 821 2kB
Search 1.55× 103 27 2kB
Serial RX 1.63× 103 7 16b
AES-Encryption 14.4× 103 283 128b
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Table 5.2: Comparison of State of the Art Microcontrollers

[2] [11] [21] [63] [67] ULSNAP
Tech [nm] 90 180 65 180 250 90
Datapath [bits] 24 32 32 8 8 16
SRAM [kB] 2000 3 16 0.33 3.12 8

High Performance Mode
Supply [V] 1.2 0.5 1.2 0.9 1.0 1.2
Perf. [MHz] 100 1 82 2 0.5 93
Energy [pJ] 145 37 41 7.5 12 47

Low Energy Mode
Supply [V] 0.4 0.4 0.5 0.5 NA 0.95
Perf. [MHz] 1 0.07 0.5 0.1 NA 47
Energy [pJ] 47 29 10 2.8 NA 29

Reported numbers for High Performance Mode are for minimum cycle time workloads. Low

Energy mode numbers are for workloads which minimize energy.

modes relative to all other state-of-the-art microcontrollers. In other words, UL-

SNAP is superior in either performance or energy, if not both metrics, as compared

to other deeply embedded microcontrollers. This is achieved by a combination of

factors: ULSNAP’s event-driven design, micro-architectural optimizations such as
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bus partitioning, and circuit implementation details such as the use of self-timed

circuits. As power and performance numbers are workload dependent, the num-

bers reported in Table 5.2 and Fig 5.10 are for the workload that performs best on

each microcontroller.

We also evaluated the node lifetime of a theoretical mote built with the different

processors in Table 5.2 using the proposed model discussed in Chapter 3. We

assume that we use the TI-CC1101 transceiver for RF communication, which offers

500kps of bandwidth and uses 55mW. We also assume that all processors can be

paired with the CC1101 or an equivalent radio.

To level the playing field as much as possible, we also paired each microcon-

troller with a Power Management Unit (PMU). ULSNAP’s PMU consists on a volt-

age scalable switched capacitor similar to the one in [58]. This DC-DC converter

has efficiencies greater than 75% across a wide range of loads. We assume that

microcontrollers [63,67] are paired with PMU consisting of a Fibonacci switched

capacitor network and a low-dropout linear regulator [69]. The Fibonacci-based

PMU has efficiencies of 62% on active mode and 12% when drawing less than

1µW of power. An exception to the previous assumption is the microcontroller

presented in [11] since it has an integrated Power Management Unit (PMU) that

contains a linear regulator with high efficiencies and optimized for active and idle

modes. The MSP430 microcontroller has an integrated PMU. While the efficien-

cies of the MSP’s PMU are unknown, our power measurements inherently account

for any inefficiencies that DC-DC conversion might offer.

We assumed sensor events arrive with a Poisson distribution and with an aver-

age inter-arrival time 1/λ. Each event has a probability α of causing the transmis-

sion of a single encrypted packet. The total packet size is 1064 bit with a payload
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of 127B. These payloads are consistent with the payload of an IEEE 802.15.4

(Zigbee/Xbee) standard. The transmission time of a packet, TT , is set by the

transmission rate. Transmitting a 1064B packet takes TT = 2.1ms. We assume

that a processor operates at maximum performance while active and transitions

into a low-voltage sleep mode during idle time.

To do a fair comparison on the lifetime of a mote

In some cases, there are data available on static power consumption of a proces-

sor core but not of the memories. For fairness, for processors reporting core-only

power numbers we add the static power consumption of an assumed 8 kB of mem-

ory. Table 5.3 show the reported static power consumption by the microcontrollers

of Table 5.2, as well as the static power consumption per bitcell. Some publications

do not report static power consumption at all, so we were unable to compute the

lifetime of the some microcontrollers [2,21].

Table 5.3: Static power consumption of memory blocks and memory bitcells

Processor Static Power Memory Static Power/cell
[W] [kB] [W]

SmartDust [56] 13n 3.125 10f
Phoenix [63] 36p 0.33 10f/4f‡

Perpetual [11] 460p 2SRAM + 3R-SRAM†

†: R-SRAM: Retentive SRAM

‡: Power-gated/not-power gated

We present lifetime as a function of the event arrival date in Fig. 5.12a. We

assume an average processing time for each event to be µ̄2 = 1.5ms in ULSNAP

microcontroller, which corresponds to the time it takes to run the statistical bench-

mark set from SenseBench and encrypt a 127B payload using a 128-bit AES block

cipher on ULSNAP. All performance numbers are taken from the measured results

shown in Table 5.1. To estimate the CPU time, µ̄2, for other microcontrollers, we
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just multiply by the frequency difference rate between the other microcontrollers

and ULSNAP. Encrypting a 127B payload requires running a 128-bit AES cipher

block 7 times, which we have accounted in our evaluation. Table 5.4 presents a

summary of the parameters used for the lifetime model evaluation and Table 5.4b

present the empirical values used for the lifetime evaluation.

Table 5.4: Parameters used for node lifetime evaluation

(a) Components of time and power spent on each state

State Average time spent before transition Power

S1 (Idle) 1
λ

Poff peripheral+PoffµP

efficiencypmu

S2 (Process) TADC +WUTµP + TULSNAP · freqµP
freqULSNAP

Pon µP+Poff peripheral

efficiencypmu

S3 (TX) WUTRadio + TRadio
Pon µP+PRadio

efficiencypmu

(b) Default parameters

Parameter Description Default Value
TTx Transmission time of 1024bits 2.368ms
PRadio Radio TX power 55mW
WUTRadio Radio wake-up time 240 µs
TADC Time for single ADC conversion 650 ns
PADC Power of ADC in active mode 1.047mW

The lifetime of the processors when the workload for each processor, Y is 1ms

is shown in Fig 5.12a. ULSNAP asymptotically approaches a maximum lifetime of

2.1 years when events arrive at rate greater than one event every 10min. Compara-

tively, at this same event rate, the processors in [11,63,67] asymptotically approach

lifetimes from 7.4 years to 7.7 years. The MSP430 microcontroller has a lifetime

of 3.5 years when events arrive at rates 1/λ > 10min, but its lifetime is affected

with great degree as events arrive faster than 1 event per second.

Fig 5.12b shows that increasing the processor load to 10ms per event does not

have a great impact on the node lifetime when events arrive very sporadically.

ULSNAP’s lifetime is reduced to 1.9 years when events arrive at a rate of 1 event
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every 10min. Comparatively, the lifetime of the lifetime of the microcontrollers

in [11,63,67] have lifetimes that range from 6.5 years to 7.5 years. In contrast,

when the CPU load is higher and event interarrival times are 10 s, ULSNAP mi-

crocontroller has a lifetime of 1 year, while other microcontrollers have lifetimes

that range from 2.5 years to 3.1 years. The gap in lifetimes between ULSNAP and

other microcontrollers has been reduced due to ULSNAP’s competitive energy

usage in high performance mode.

The impact of performance can also be noticed in Fig. 5.12. While ULSNAP’s

lifetime has a long left tail, other microcontrollers do not enough processing power

to handle fast interarrival events, i.e. processing events at fast interarrival rates

unfeasible. For instance, in Fig. 5.12b, while ULSNAP and the MSP430 micro-

controller can process events arriving faster than 1/10th of a second, the other

microcontrollers can only handle events arriving at roughly 1 event per second. If

the CPU workload is increased, as shown in Fig. 5.12c, we see that ULSNAP can

handle almost 10 events per second, while the MSP430 can only handle events ar-

riving once per second. In contrast, all the other microcontrollers can only handle

1 event every 10 seconds. A 10 Hz event arrival rate may seem quite high for a

WSN application, but the fact that ULSNAP can handle such event rates provides

the system designer with additional data processing capabilities. Some examples

include calculating a moving average, various filtering operations, or even somehow

coordinating computation with other nodes in the WSN.

To measure the effect of splitting the datapath buses into two fast and slow

buses, we performed an experiment that performs 20 × 106 consecutive memory

writes first to the Data memory DMEM and then to the Instruction memory ISTORE.

The unit responsible to access DMEM is connected to the fast buses while the unit
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Figure 5.12: Lifetime comparison between motes with ULSNAP and other mi-
crocontrollers as function of inter-arrival time. We assume that we are using a
35mAh, 3V CR1220 coin cell battery

responsible to write into the Instruction memory is connected to the slow buses

as shown in Fig 5.1. While this is not an exhaustive test of every functional unit
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on both buses, the DMEM and ISTORE interfaces are identical save that they are

connected to different buses. Thus this test is representative of the overheads in

accessing the slow bus.

Writes to the data memory completed in 270ms (15 ns/access), while writes to

the instruction memory were completed in 526ms (29 ns/access). This is consistent

with our expectations since the ISTORE interface uses the slow buses while the DMEM

interface is connected to the fast buses as shown in Fig. 5.1. The performance

disparity between DMEM and ISTORE is a good indicator that bus splitting improves

the performance of commonly executed instructions at the expense of rarely used

instructions.

The time between event arrival and ULSNAP reacting, i.e. waking up from

idle, is 6.5 ns. Upon receiving an external message or a timer event, full control is

transferred to the core from the Event Handler within 14.8 ns. The first instruction

starts execution within 40 ns. Note that these latencies are from SPICE simulation

of extracted layout with full parasitics, since they are not directly observable on our

test setup. In comparison, some processors in Table 5.2 incur in lengthy wake-up

penalties. For example, the processor in [11] needs to follow a wake-up sequence

consisting of 4 steps: i) turn on linear voltage regulators, ii) speed up the switched

capacitor clock network, iii)enable memories and iv) transfer control to processor.

Even though no reports wake-up time. This wake-up sequence takes on the order

of 130 to 150 clock cycles, this latency was added to the execution time while

evaluating the lifetime models reported in Fig. 5.12.

Fig. 5.13 shows the power envelope of an encryption benchmark (TEA) that is

representative of the benefits of ULSNAP’s event-driven design. This benchmark

receives (Rx) 4 kB data from the serial interface, encrypts the data, and transmits
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(Tx) the result over the serial interface. During the Tx and Rx phases the power

consumption is only 22 µW. When all the data is available, encryption runs at

full throughput (93MHz). After transmission it naturally goes into a deep sleep

mode and uses only 9 µW. The average power consumption of ULSNAP on this

benchmark is only 98µW.
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Figure 5.13: Power profile of an encryption benchmark (TEA) [45]

Note that the TEA benchmark is not annotated with power or sleep directives.

In fact, the programmer need not explicitly define a sleep mode at all. The trace

in Fig. 5.13 illustrates that ULSNAP will automatically scale power usage with

activity.
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5.5 Improving Sensor Node Lifetime

ULSNAP is a good fit for sensor network motes with bursty, computationally in-

tensive workloads. Figure 5.13 shows how it dynamically scales its throughput

to maintain the lowest possible power envelope at all times without programmer

effort. Furthermore, in Fig. 5.12 we see that for computationally intensive work-

loads, ULSNAP is the only processor that is able to process a fast periodic stream

of events in a timely manner. On the other hand, Fig. 5.12 shows a big disparity

between the node lifetime between ULSNAP and other microcontrollers when the

event inter-arrival time is greater than 40 s.

As the event inter-arrival time increases, the sensor mote spends most of the

time in a quiescent state. Consider a 300 s(5min) inter-arrival time, at that point,

a microcontroller spends 0.033% in active mode and 99.967% of the time in idle

mode.

Since WSN workloads are bursty, we need to focus on reducing the static power

on the idle power state to improve overall mote lifetime. The difference between

measured and simulated static power is shown in Fig.5.14. We attribute the big

gap between the two results to the transistor model limitations and a large variance

in the measured results.

Fig. 5.15 shows the power consumption of our test chip for the ULSNAP mi-

crocontroller. The static power is dominated by the memory (98%). While it is

not surprising that memories dominate the static power consumption, the absolute

value of static the power consumption in the memories consume was unanticipated.

In the memories, the bitcell arrays account for 99% of the static power consump-

tion. In order to improve mote lifetime, we should first consider reducing the static
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Figure 5.14: ULSNAP simulated and measured static power consumption

power contribution of the main component: the memory banks.
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Figure 5.15: Breakdown of ULSNAP’s static power at nominal V dd (1.2V)

The static power consumption of the core datapath is a mix of the diverse

elements that comprise it. The breakdown of the static power consumption of the

core datapath is shown in Fig. 5.16. The fast execution units (BRANCH, LOGIC,

ARITH, DMEM, SHIFT) account for 59% of the static power consumption of the core.
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Figure 5.16: Breakdown of core’s datapath static power consumption

Figure 5.17 shows the static power consumption of an 8 bank, 4 kB SRAM

memory with different bitcell configurations. In the baseline configuration of Fig-

ure 5.17, the length of all transistors is Ldesign = Lmin = 140nm, The access

transistors have a W = 140nm and the inverters have a Wp/Wn = 180nm/200nm.

The sizing of our baseline configuration these transistors is similar to the ones

used in [17,60]. The bitcell fabricated in our testchip, relies on long channel de-

vices to reduce leakage: W = 120nm, L = 0.140nm for the access transistors and

Wp = Wn = 120nm, Lp = 310nm, Ln = 200nm, for the inverters. Fig. 5.17 clearly

shows a reduction between our configuration and the baseline, but the use of HVT

transistors provides an exponential decrease in static power compared to the mem-

ory banks that used standard-Vt transistors. The bitcell configuration that has less

static power consumption is the one that uses long-channel configuration and HVT

transistors: 460 nW at 0.9V.
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Figure 5.17: Static power consumption of a 4 kB memory bank using multiple
bitcells configurations
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5.5.1 Minimum energy through voltage scaling

There is a vast body of research that shows ultra-low energy operation is achieve

by reducing the supply voltage to a particular point. As the supply voltage is

reduced, the dynamic component energy reduces monotonically. The optimum

energy point is achieved whenever the leakage component of energy dominates, as

it has a global minimum above the functional minimum voltage [42].

On one hand, the correctness of a QDI circuit does not rely on delays of wires

or gates. Hence, QDI circuits should automatically adjust to variations on gates

and wires delay. On the other hand, the lowest digital supply voltage of our chips

is 0.8V-0.9V, however at 0.9V we found that all our chips are functional.

The ideal voltage for minimum energy consumption on CMOS circuits one that

is is above the nMOS transistor threshold voltage. This mode of operation is com-

monly called Near Threshold Voltage (NTV). Unfortunately, when reducing the

supply voltage, the devices have a higher susceptibility to parametric variation—

i.e. the device parameters’ deviation from their nominal specifications.

By using extensive extracted SPICE simulations, we concluded the following

factors contributed to the failure of the cells at supply voltages lower than 0.85V:

• Staticizers. The production rules for an operator with a pullup network

pun, pulldown network pdn, and output node z are given by pun → z↑

and pdn → z↓. Such an operator is non-interfering and combinational if

pun ≡ ¬pdn. The weaker constraint of pun| pdn ≡ true, denotes a non-

interfering dynamic operator. Adding a staticizer (or keeper) to the output

170%chips work
1100% working chips
1Lumped intrinsic and coupling model
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node, z, of a dynamic operator ensures the output is always driven. A

detailed analysis of these operators is can be found Sec. 4.1.

The added circuitry is a feedback inverter with input z and output z. The

problem with this solution is that in order to flip the stat of node z, the

guards of the production rule need to fight the weak inverter. For example,

given the initial state of z↓. If pup ≡ True then the rule pup → z↑ needs

to fight the weak rule z → z↓. This means that the sizes of the staticizer

relies on two conflicting sets of optimization constraints on the weak feedback

inverter.

In the NTV regime, the requirement to satisfy the two-sided inequality be-

comes very difficult. In the case of the ULSNAP microcontroller, these errors

manifested as stuck-at faults and incomplete transitions. The problem was

exacerbated by the use of multi-threshold CMOS devices.

• Transistor sizing and operator topology. ULSNAP sizing was done using

a semi-automatic way. This involved multiple iterations that achieve an

energy local minimum point at nominal Vdd . Due to design time constraints,

we were not able to perform a thorough verification, in particular at lower

voltages.

An example of an incorrectly sized PR is shown in Program 5.5. The pull-

down network of z is undersized, and the combinational feedback is over-

sized. This operator failed due to a combination of self-overloading and the

lack of drive-strength of the pull-down network.

• Number of Transistors in series. We found a lone production rule with 6

transistors in series in the pull-down network. By empirical testing, we found

a reasonable number of transistors
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Program 5.5 Incorrectly sized production rule. The values between ⟨·⟩ represent
the sizes of transistors as multiples of lambda

pcgh⟨9⟩ ∧ F → z↓
¬pchg⟨10⟩ → z↑

z ⟨10⟩ → z↓
¬ z ⟨10⟩ → z↑

#Combinational Feedback
z ⟨4⟩ ∧ pchg → z↓
¬F⟨10⟩ ∧ z → z↑

Something important to note, is that all circuit failures were due to operator

failures. These operators break the assumptions of monotonicity and that

More recent research developed iterative algorithms to search for the most

energy efficient operating point given a set of constraints on the digital noise mar-

gins [28]. We intend to develop a similar tool set to be used in the sizer that we

used for the ULSNAP microcontroller.

74



CHAPTER 6

ENCRYPTION IN WIRELESS SENSOR NETWORK NODES

Wireless Sensor Networks (WSNs) are becoming more prevalent in a myriad

of applications ranging from medical monitoring devices to industrial control sys-

tems. ULSNAP’s advanced circuit and architectural techniques provide increased

processing horsepower for a minimal increase in energy consumption, enabling

more complex operations on collected data to be performed locally. This reduces

the duty cycle of energy-hungry communication systems on motes. However, any

data or computed results must be eventually transmitted wirelessly for remote

collation and additional processing. This transmitted information is oftentimes

sensitive and should be kept confidential. While we can and should enforce strict

security policies at either end of the wireless link, encrypting the data being sent

is arguably the first line of defense to protect information confidentiality [51].
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This poses two questions to WSN designers: 1) Which encryption protocol to

implement? and 2) How best to implement the chosen protocol given the design

constraints? Implementation is further complicated by the unique challenges of the

WSN encryption design space, in particular the need for small energy envelope.

Typical WSN mote activity patterns are “bursty,” i.e. long quiescent periods

followed by a brief, highly-active period. As a result, minimizing both active

and idle power is quite important, muddying the traditional trade-offs between

application specific logic and the general-purpose processing available on a WSN.

In this section, we evaluete our WSN by contrasting two platforms: the MSP430

(CC430F6137) [24] and ULSNAP [52], representing the state-of-the-art in industry

and academia, respectively.

6.1 Background

A cryptographic system is one of the main supporting tools that enables the con-

fidentiality of sensitive data traveling across an unsafe channel. A generic crypto-

graphic system can be modeled as a 5-tuple (P , C,K, E ,D), where P and C are the

plaintext and ciphertext, K is the cipher key, and E and D are the encrypting and

decrypting functions [7].

6.1.1 Cipher Functions

Most modern cryptographic systems implement their encryption (E) and decryp-

tion (D) functions with relatively complex algorithms. Generally, these algorithms

can be separated in two different categories:
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1. Stream Ciphers use a pseudo-random keystream based on the key (K) to

operate on each individual character of the plaintext or ciphertext.

2. Block Ciphers operate on fixed length chunks of the plaintext or ciphertext

called blocks. Typical operations on the blocks are transposition or substitu-

tion.

Stream ciphers are considered safer than their block cipher counterparts only

if the length of the message is less than the key length, i.e. |P| ≤ |K|. Thus,

stream ciphers are a rather impractical choice for many designs, particularly in

environments with limited resources like a WSN. For this reason, we will concern

ourselves primarily with block ciphers.

6.1.2 Modes of Operation

Block ciphers, by construction, operate on fixed length sections of the plaintext or

ciphertext. In the case where the message is smaller than the block size, we can

encode/decode by appropriately padding the message. However, in the case where

a message exceeds the block size, we have a choice between several different modes

of operation [49]. In all of the modes, there is a block cipher encryption step,

which uses the key (K) to encrypt a block’s worth of data. This block encryption

step is defined by the cipher and is the same across all modes of operation. What

differentiates the modes of operation from one another is the inputs and outputs

to the block encryption step:

• Electronic Codebook (ECB) — The input to the block encryption step is a

plaintext block and the output the corresponding ciphertext block, as shown
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in Fig. 6.1a. Each block’s ciphertext can be independently computed from

each block’s plaintext.

• Cipher Block Chaining Mode (CBC) — The input to each block encryption

step is the XOR of a plaintext block and the previous ciphertext block,

as shown in Fig. 6.1b. CBC combines ideas from both block and stream

ciphers, effectively mimicking a stream cipher that operates at the block

level as opposed to the character level. The first plaintext block is typically

XORed with an Input Vector (IV). Care should be taken when selecting an

IV , as this presents a potential attack vector on the cryptographic system.

• Cipher Feedback Mode (CFB) — The output of each block encryption step is

XORed with the corresponding plaintext block, as shown in Fig. 6.1c. The

post-XOR data is the ciphertext, which is passed to the next block as the

input to its block encryption step. This effectively emulates a stream cipher

using block cipher primitives. As there is no ciphertext for the first block,

we must make use of an IV , just as in CBC.

• Output Feedback Mode (OFB) — OFB is very similar to CFB in that it

effectively is also a stream cipher. The key difference, shown in Fig. 6.1d,

is that the input to the next block’s encryption step is the output of the

previous block’s encryption step instead of the previous ciphertext.

• Counter Mode (CTR) — CTR can be viewed as a compromise between the

various feedback or chaining modes and ECB. Like CFB and OFB, the XOR

of the plaintext and the output of the encryption step is the ciphertext.

However, as seen in Fig. 6.1e, the input to each block encryption step is a

different IV , typically implemented as an incrementing counter. While CTR

is still a stream cipher mode similarly to CFB and OFB, the use of a counter

breaks the dependency on the previous block encryption step.
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• Authentication Modes — Authentication modes such as Galois/Counter

(GCM) and Counter with CBC-MAC (CCM) offer an authentication tag

in addition to ciphertext to provide confidentiality, integrity, and authentic-

ity assurances on the encrypted data. Of course, these additional features

come with additional overheads. Both the GCM and CCM modes are based

on the CTR mode of operation.
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Figure 6.1: Common Cipher Modes of Operation
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6.1.3 Cipher algorithms

There are a number of possible choices for cipher algorithms. To aid in our design

space exploration, we leverage the analysis done by the US government on several of

the leading candidates. As of December 2013, the US Federal government requires

a minimum security strength of 112 bits1 for all sensitive transactions [50]. As of

2014, the US National Institute of Standards and Technology (NIST) approves 3

block ciphers for federal use with certain restrictions:

• Advanced Encryption Standard (AES) [48] is approved for both non-classified

and classified information by the US Government. Typical key lengths are

128, 192, or 256 bits. As the only publicly known and computationally

feasible attacks on AES are side-channel attacks [8,54,61], NIST has rated

AES to provide at least 128 bits of protection [50].

• Triple Data Encryption Algorithm (TDEA) [46], also referred to as Triple

Data Encryption Standard (Triple DES), has a 168-bit key length. However,

due to several weaknesses, NIST has estimated TDEA provides only 80 bits

of security2 [50]. TDEA is also relatively complex in comparison to other

block ciphers.

• Skipjack [47] was specifically designed for efficient computation and low mem-

ory footprint [31]. Attacks of the Impossible Differential Cryptanalysis (IDC)

type are only known on 31 of the 32 rounds and they are only marginally

faster than the brute force attack [6].

1With the exception of digital signatures, which are allowed to use 80 bits of security strength
2Provided that the attacker has approximately 240 (P, C) pairs encrypted with the same K

vector.
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6.2 Sensor Network Encryption

The WSN design space presents a number of additional design challenges for cryp-

tographic systems, in particular maximizing energy efficiency. One cannot simply

examine a sensor mote in isolation, however. The choice of cipher algorithm as well

as cipher mode of operation is largely dependent on system-level considerations.

Additional design choices include the Open Systems Interconnection (OSI) model

layer at which encryption is implemented, software versus hardware versus hybrid

software/hardware implementations, as well as cipher key length.

6.2.1 Cipher Selection

Tables 6.1 and 6.2 list different encryption implementations in existing WSN solu-

tions, the ciphers used, as well as the mode of operation for the link/network layer

and session layer, respectively.

Table 6.1 and Table 6.2 show that AES, TDEA, and Skipjack are quite popular

for both network/link and session layer implementations. RCx cipher algorithms,

while secure and popular, do not offer significant competitive advantages with

respect to AES.

Skipjack is attractive, given its ease of implementation and small memory foot-

print, and may be appropriate for applications where security needs are less strin-

gent. However, NIST Special Publication 800-131A has recommended that Skip-

jack be phased out in 2010 except for legacy applications and some variants of

TDEA be phased out by 2015. AES is the only symmetric cipher deemed as ac-

ceptable without restrictions by NIST 800-131A [50]. Given all the constraints,
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AES is our cipher of choice. This choice is consistent with existing comprehensive

security frameworks for WSNs such as TinySec [27] and MiniSec [34].

Table 6.1: Link and Network Layer

Protocol Cipher Mode of Operation
ZigBee AES CTR, CBC, CCM
Z-wave AES CFB, OFB
TI (MSP430,CCX) AES Various
Clipper based Skipjack -
TinySec [27] Skipjack CBC
MiniSec [34] Skipjack, AES CBC
SNEP (SPINS) [55] RC5 CTR

Table 6.2: Session Layer

Library Cipher Mode of Operation

GPG
AES, TDEA, CAST5,
2F, Camelia

CFB

IPSec AES, TDEA, CBC
SSH AES CBC

SSL3.0
AES, TDEA, IDEA,
Cam, D, RC[2-5]

CBC, GCM, CCM

TLS2.0
AES, TDEA, IDEA,
Cam, D, RC[2-5]

CBC, GCM, CCM

We can see that the choice of OSI layer to implement encryption does not

strongly affect the cipher mode of operation. Of particular interest is the absence

of ECB in both tables. ECB is amenable to many optimizations such as pipelining

and loop unrolling. However, ECB mode leaves the system vulnerable to attacks

such as known-plaintext and known-ciphertext [49].

On the other hand, CBC makes several appearances in both types of imple-

mentations. The CBC mode has a loop dependency between two adjacent blocks

in the data stream with the encryption step on the critical path. Thus, when using

CBC, designers must pay particular attention to reducing the latency of the block

encryption/decryption step. Typical hardware implementations minimize latency
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by using lookup tables (LUT) or logic arrays (PLA).

There has been some discussion regarding CTR and its derivatives, in particular

regarding a perceived vulnerability due to the use of an incrementing counter.

Limpaa et al. argue that any such vulnerability is due to a differential weakness

in the block cipher used and not a valid criticism of CTR [33]. Of course, as with

any stream cipher, great care must be taken to not reuse the chosen IV for CFB,

OFB, and CTR. Ensuring this constraint is maintained across all motes in a sensor

network is impractical, so in this work we primarily focus on CBC as our mode of

operation, similar to TinySec [27].

6.2.2 Software Implementations

Software implementations of cryptographic systems can be quite troublesome. Pro-

grammers face the traditional problems of bugs, maintenance, and optimizations,

but the negative effect of these issues is higher than usual. Optimizations can

lead to potential attack vectors, bugs can lead to outright breaches of confiden-

tiality, and maintenance patches must be carefully vetted to avoid introducing any

additional vulnerabilities.

The benefit to a software implementation is mutability—changes can be made

to applications deployed in the field to correct bugs and close off potential avenues

of attack. Mutability is a clear advantage over a hardware implementation, but it

comes at a loss in active energy use and throughput. To combat this, especially

in the energy-starved WSN application space, designers must make careful opti-

mizations to reduce energy consumption of the cryptographic system, which can

often increase complexity of the software. As such, there are conflicting goals in a
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software implementation: throughput/energy efficiency and software simplicity.

6.2.3 Hardware Implementations

In general, hardware cryptographic systems offer energy and throughput advan-

tages at the cost of being immutable. One of the primary enablers for high-

throughput hardware implementations is pipelining. Non-pipelined datapaths ex-

ecute the entire computation as an atomic operation, at least from the point of

view of any control structures. In contrast, a pipelined datapath breaks the com-

putation into sequential operations that can each operate independently on data.

Traditionally, pipelining improves throughput at the cost of latency through the

datapath. Feedback is also difficult to incorporate into a pipelined datapath, which

is a significant implementation hurdle for many of the cipher modes of operation

detailed in Sec. 6.1.2.

One of our evaluation microprocessors, ULSNAP, makes use of asynchronous

circuits [52], which we briefly cover here. While there are several families of asyn-

chronous circuits, ULSNAP makes use of Quasi-Delay Insensitive (QDI) circuits,

which are the most robust to variations in process, voltage, temperature, and tim-

ing. QDI circuits are built with Martin Synthesis [38], which is a procedure that

breaks apart a computation into fine-grained hardware processes that communi-

cate over point-to-point delay insensitive channels. Instead of using a global clock

to synchronize actions and flip-flops as storage elements, QDI circuits use channels

for local, between-process synchronization and represent data as tokens traversing

these channels.

The logic that makes up each QDI hardware process and the QDI channels
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themselves are robust to arbitrary gate delays. As a result, QDI circuits are in-

trinsically tolerant to process, temperature, and voltage variations. QDI circuits

are also naturally event-driven, waiting in a quiescent state with no switching ac-

tivity until a data token arrives. This is the equivalent of perfect clock-gating

in a synchronous system—inactive processes consume only leakage current. Since

encryption is typically only active during data transmission in the WSN applica-

tion space, an asynchronous circuit implementation benefits from effectively in-

stantaneous wake-up/sleep time and a perfect clock-gating implementation. The

ULSNAP processor used in our evaluation has this property [52].

6.3 AES Implementation

AES has become the industry standard in applications ranging from SSL to storage

media encryption. For this reason and those outlined in Sec. 6.1.3, we keep the focal

point in AES within the context of WSNs. Here, we provide a brief overview of

AES, focusing on the logical breakdown of the cipher in preparation for discussing

our hybrid implementations in Sec. 6.4.

AES uses 128-bit blocks and either 128-, 192-, or 256-bit keys (K). Typically,

the blocks are further organized into a 4×4 matrix of 8-byte elements. This matrix

is oftentimes referred to as the state. Each block of plaintext (Pi) and ciphertext

(Ci) is 128 bits to match the AES block size.

Internally, an AES block cipher encryption/decryption step is implemented

as a network of substitution and permutation operations wrapped in a loop or

round. The number of round iterations is dependent on the key length—10, 12,

or 14 rounds for 128-, 192-, and 256-bit keys, respectively. This structure is then
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organized into a larger structure to implement the desired cipher mode of operation.

The initial key is expanded into multiple 128-bit round keys. This step is called the

key schedule, and can be pre-computed or computed on-the-fly for each encryption.

Typically, each iteration of a round performs 4 basic operations on the elements

of the 4× 4 state matrix:

6.3.1 Add Key (AK)

Perform a bitwise XOR of each byte in the state matrix and the corresponding

byte of the current input block.

6.3.2 Byte Substitution(BS)

Substitute each byte of the input block with one from a lookup table using the

non-reversible, non-linear mapping provided by a Galois Field, typically GF (28).

6.3.3 Shift Rows(SR)

Cyclically left shift each row of the state matrix. The shift amount for the nth row

is n bytes, assuming we index from zero.

6.3.4 Mix Columns (MC)

Apply an invertible linear transform to each state matrix column. The input and

output of the transform function are both 32-bits wide.
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Figure 6.2: AES Block Cipher

6.3.5 Block Cipher

Fig. 6.2 shows the dataflow diagram for a complete execution of a 128-bit key

AES encryption. The contents of Fig. 6.2 are then wrapped with the appropriate

control structures to implement the desired cipher mode of operation. Effectively,

Fig. 6.2 is an expansion of the E blocks in Fig. 6.1.

As of now, many if not all WSN motes are designed with a single-threaded

execution model to reduce energy consumption. Thus, the cost of ciphering a single

block governs the overall encryption performance for all modes of operation. The

traditional optimizations are still available to the programmer, e.g. loop unrolling,

macro insertion, and inline assembly code. However, the embedded programming

environment presents some unique challenges, in particular the limited memory
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Figure 6.3: Non-pipelined AES implementation

space, even for programs. We compare complete software implementations of AES

against hardware and hybrid implementations in Sec. 6.4.

If we are willing to invest in a hardware implementation, we have the oppor-

tunity to depart from the single-threaded execution model enforced on software

implementations by the low-energy WSN environment. Completely unrolling the

loop computation is possible on a system such as an FPGA [65], but this is too

expensive in both energy and area for the WSN space.

Another available hardware optimization is pipelining the computation, but
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this is only useful for modes of operation without data dependencies, i.e. ECB and

CTR. As discussed in Sec. 6.2.1, we choose CBC over ECB and CTR due to their

insecurity and unsuitability for the WSN space, respectively. Due to the feedback

or loop dependency in modes like CBC, deep hardware pipelining represents a sig-

nificant energy and area overhead for little to no performance benefit. In practice,

some degree of pipelining is still desired to logically separate the various stages of

encryption, reduce signal fanout, and ease system design.

QDI circuits, as described in Sec. 6.2.3, have the additional and automatic

benefit of decoupling pipeline occupancy from pipeline depth. In other words,

an n stage asynchronous pipeline can potentially support up to n data tokens in

flight but will gracefully handle as few as 0 or 1 tokens without necessitating the

injection of NOPs. Since QDI circuits effectively offer fine-grained clock-gating,

this alleviates the energy overhead of pipelining.

Fig. 6.3 illustrates our encryption engine hardware implementation. While it

is implemented at the circuit level as a pipelined system—each box represents a

pipeline stage, we treat the system as an un-pipelined functional unit. The Input

Gate process only allows a single token to enter the pipeline, waiting for a “done”

signal from the Output process before allowing another token in.

We implemented AES using the CBC mode of operation, so the next step is an

XOR with the output or IV as appropriate. The unrolled encryption key is stored

in an SRAM memory that can be written externally by the user. The SRAM is

readable only by the AK process. All access to the SRAM is controlled via the

Port Access process, which arbitrates between key writes and accesses.

It is worth noting that while the encryption of one message using AES CBC is
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not pipelined, the encryption of multiple messages can be pipelined. By modifying

the Input Gate and Output processes to properly interleave the plaintext and ci-

phertext blocks of the various messages, we can have multiple in-flight encryptions.

The maximum amount of in-flight messages is limited by the maximum occupancy

set by the circuit-level implementation of the system shown in Fig. 6.3.

6.4 AES Evaluation

Two key metrics are of paramount importance while building a sensor network

node: mote lifetime and performance. Increasing application complexity in WSNs

has forced increased throughput requirements on all steps in the typical WSN

computation: gathering data, processing data, encrypting results, and sending

results. Thus, maximizing the throughput of the encryption step without adversely

affecting mote battery life is of great interest. In the context of WSN cryptographic

system implementations, particularly in hardware, memory usage and area are also

metrics of interest.

To evaluate impact of the WSN lifetime with the addition of AES to our system,

we can modify the TX state S3 in the semi-Markov chain described in Fig. 3.2 as

shown in Fig. 6.4. The TX state, S3 is now comprised of an embedded chain of an

encryption state SE and data transmission state ST .

Assuming that X ≫ Y, Z, we approximate the average sensing time X as

the inter-arrival time 1/λ. We also expand the power state S3 into its embedded

Markov chain of SE and ST , which means that the mean time spent in S3 can be

expressed as the sum of the mean times spent in SE and ST , i.e. Z = TE + TT .

We can thus rewrite Eq. (3.11) as:
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tlife(λ) ≤
Etotal(1 + λ(Y + α(T̄T + T̄E))

P1 + λ(µ̄2P2 + α(T̄TPT + T̄EPE))
(6.1)

We use Eq. (6.1) in this section to compute mote battery lifetime, a key figure

of merit for our evaluation.

In our study, we benchmarked and analyzed software, hardware, and hy-

brid AES implementations for two microcontrollers: the TI MSP430, version

CC430 [24], and ULSNAP [52]. MSP430 cores are more power efficient than At-

mel’s ATMega counterparts and are widely used, both by professional engineers

and electronics hobbyists. Furthermore, the MSP430 chip provides a completely

in-silicon solution for AES. ULSNAP is a microcontroller design from academia

targeted for the WSN space. ULSNAP employs a number of advanced techniques

at both the circuit and microarchitectural levels to improve energy efficiency while

maintaining performance [52].

The MSP430 CPU implements a 16-bit, single-pipeline Von Neumann architec-

ture with a modern RISC ISA. ULSNAP is also 16-bit and has a MIPS-like RISC
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ISA, but implements a Harvard architecture. More details about ULSNAP’s archi-

tecture can be found in Chapter 5 and Appendix B. Again, while ULSNAP does

not have explicit active power modes, by changing the operating voltage the user

can choose high-performance and low-power characteristics. At the maximum op-

erating voltage of 1.2V, ULSNAP runs at 93MHz and draws 3.45mA—47pJ per

operation. By lowering the operating voltage to 0.95V, we can reduce ULSNAP’s

performance and current consumption to 47MHz and 1.3mA, respectively. Energy

consumption for ULSNAP at 0.95V is 29 pJ per operation on average.

With respect to our model described in Sec. 3.2, we assume regularly spaced

sensor events, each of which has probability α of causing the transmission of a

single encrypted packet after being processed. The total size of each packet has a

payload of 127B. This payload is the maximum allowable data to be transmitted

in a Zigbee packet as defined by the IEEE 802.15.4 standard. The transmission

time of a packet, TT , is set by the transmission rate. We assume that our motes

use the TI-CC1101 transceiver which offers 500kbps of bandwidth at 55mW [23].

Using this transceiver is natural fit for the MSP430, and we assume ULSNAP can

be paired with the CC1101 or an equivalent radio. Transmitting a 42B packet

takes TT = 672 µs.

We assume the average processing time for each event to be Y = 1.1ms, which is

the average completion time for the statistical benchmark set from the SenseBench

suite running on ULSNAP as described in Section 5.4.1. X and TE are dependent

on the event inter-arrival time and AES implementation, respectively. Note that

encrypting the 29B payload takes two full encryptions, which we have accounted

for in our evaluation below.
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6.4.1 Software-Only Approach

The best software implementations are those that are hand-tuned for a particular

hardware platform. For consumer/business software, this is not always possible,

but in the WSN application space the hardware platform is well-defined. In order to

maximize energy efficiency, programmers can leverage different hardware features

such as operating mode to reduce power consumption. The MSP430 microcon-

troller offers a total of 9 different power modes. Five of these modes are inactive

modes where the CPU core and various peripherals can be shut off. The remaining

4 modes are active modes offering a tradeoff between active power consumption

and processor performance. Table 6.3 summarizes these active modes. ULSNAP

does not offer any explicit power modes, but performance scales smoothly with op-

erating voltage due to its QDI circuit implementation. Furthermore, it naturally

goes into a deep sleep mode when all events have been processed.

Table 6.3: MSP430 Active Core Power Modes

Voltage Current Max Freq.
Mode

[V] [mA/MHz] [MHz]
0 1.8 0.160 8
1 2.0 0.190 12
2 2.2 0.213 16
3 2.4 0.225 20

In mode 3, high performance (HP) mode, the MSP430 core consumes 4.5mA

at 2.4V, which translates to about 54 nJ per operation. When running in mode

0, the minimum frequency is 1MHz. In this extreme low-energy (LE) mode, the

MSP430 runs at 1.8V and consumes 160 µA for a energy per operation of 28 pJ.

In order to compile our software implementations, we used Code Composer

Studio with the MSP430 processor and the LCC compiler toolchain for ULSNAP.

For the MSP430, we counted the cycles to complete a full encryption and multiplied
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by the clock frequency to calculate the throughput and delay. Since ULSNAP has

no clock, we measured throughput and delay for ULSNAP using a logic analyzer

to measure the start and stop times for encryption.

Table 6.4: AES Software Implementations

Perf. Power Energy Memory
Design Mode

[Mbps] [mW] [nJ/bit] [B]
HP 0.102 10.8 105.4

TI-C
LE 0.005 0.2 56.1

3441

HP 0.420 10.8 25.3
TI-MSP430

LE 0.021 0.2 13.5
1184

HP 1.550 4.1 2.6
ULSNAP-C

LE 0.786 1.2 1.5
2670

HP 1.850 4.1 2.2
ULSNAP-O

LE 0.935 1.2 1.3
2664

Table 6.4 shows the power and performance for four different software imple-

mentations of AES running at the high and low power modes of our test micropro-

cessors. HP is active Mode 3 for the MSP430 and 1.2V for ULSNAP, and LP is

active Mode 0 for the MSP430 and 0.95V for ULSNAP. TI-C and ULSNAP-C rep-

resent the same AES library written in C compiled for the MSP430 and ULSNAP,

respectively. TI-MSP430 is a Texas Instruments software implementation of AES

optimized for the MSP430. ULSNAP-O is an optimized software implementation

of AES written by the designers of ULSNAP.

In general, ULSNAP performs better than its MSP430 counterpart. For in-

stance, the optimized TI library provides maximum throughput of 0.42 Mbps.

The ULSNAP core quadruples the MSP430 performance to 1.85 Mbps while us-

ing 10x less energy. On the other hand, the ULSNAP microcontroller uses much

more memory than the TI implementations. This is mostly due to the differences

in memory architecture—ULSNAP is word-aligned (16-bits) while the MSP430

allows for byte-aligned memory access.

94



6.4.2 Hardware-Only Approach

Table 6.5: AES Hardware Implementations

Process Energy
Design

[nm]
Perf. Latency

[pJ/bit]
[9] 130 141 Mbps 910 ns 79
[13] 350 9.9 Mbps 12.9 µs –
[13] 350 12.8 Kbps 10.3ms 55000
[65] 180 1.6 Gbps 80 ns 300
[44] 130 10.0 Gbps 11.3 ns 191

MSP430 – 15.0 Mbps 8.5 µs 717
ULSNAP-AES 180 907 Mbps 138 ns 34
ULSNAP-AES 90 948 Mbps 135 ns 8

We define a “hardware approach” as any implementation of AES as an isolated

coprocessor. The plaintext and key are transferred to the specialized coprocessor

and the ciphertext is returned. Oftentimes, the AES coprocessor will trigger an

interrupt upon completing encryption, freeing the main processor to engage in an-

other task in parallel. Many hardware implementations of AES exist, from both

academia and industry. Common optimization goals are low transistor count, high

throughput, and low energy. While we cannot compare all possible AES imple-

mentations, we show the reported numbers for the best-in-class implementations

in Table 6.5.

A comparison of the hardware implementations in the Energy-Throughput

space is shown in Fig. 6.5. The implementation in [44] offers the best through-

put, delivering 10Gbps, however it uses almost 2W of power (191pJ/b), making

it a choice more suitable for high performance applications such as servers or net-

work routers. Our design, ULSNAP-AES, delivers encryption at rates of 950Mbps,

while only requiring only 8pJ/b. All designs in Table 6.5 and Fig. 6.5 compare

implementations of the AES algorithm running in CBC mode.

95



101 102 103 104

Performance [Mbps]

100

101

102

103

E
n
er
gy

[p
J
]

Buouesse

Verbauwhede [65]

Satoh [44]

MSP430 [24]

ULSNAP-AES (180nm)

ULSNAP-AES (90nm-Low Power)
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We augment ULSNAP with a CBC implementation of AES as described in

Sec. 6.3. Our primary design goal for our implementation at both the circuit and

architectural levels was minimizing energy. Our performance and throughput num-

bers come from transistor-level SPICE simulations, including wiring capacitance.

Table 6.5 includes two different versions of our AES implementation, one in a

180 nm high-performance process and the other in an 90 nm low-power process to

match ULSNAP [52]. The static power consumption of ULSNAP AES is 7.54 µW

and 17.3 µW for the 180 nm and 90 nm versions respectively. The performance and

static power numbers illustrate the effects of the different doping characteristics

of the high-performance and low-energy processes, and the effects of scaling on

leakage current.

Table 6.5 also includes the MSP430’s hardware implementation of AES. Our

measurements indicate that the Processing step (S2) takes 170 clock cycles, de-

livering 15.05 Mbps. However, an extra 140 clock cycles are required to load the

plaintext into the encryption unit, set the coprocessor interrupts, and retrieve the

data from the AES coprocessor, so the net performance rate is 8.5 Mbps.

96



6.4.3 Hybrid Approach

As described in Sec. 6.3, we can logically partition the AES computation, enabling

us to implement a hybrid scheme where some AES blocks are implemented in

hardware and some in software. We partitioned the AES system into four parts:

Loop Control (Ctrl), Add Key (AK), Byte Substitution and Shift Rows (BS), and

Mix Columns (MC). We combined Byte Substitution and Shift Rows as a logical

step as they are always executed sequentially, as seen in Fig. 6.3.

Table 6.8 enumerates all possible hybrid hardware/software configurations of

our AES implementation, with the caveat that Ctrl is only implemented in hard-

ware if AK, BS, and MC are also all hardware. For all software blocks we used the

same AES library as used for our earlier valuation of the TI-C and ULSNAP-C

software configurations. All of the ULSNAP configurations are evaluated in the

90 nm low-power process discussed earlier. Per-block measurements for both soft-

ware and hardware ULSNAP implementations are available in Tables 6.6 and 6.7,

respectively. As we do not have access to the details of the MSP430 hardware im-

plementation of AES, we substitute the appropriate pieces of our AES hardware

implementation for the following analysis of hybrid configurations on the MSP430.

Table 6.6: ULSNAP Software AES Blocks

Delay Energy Memory
Block Mode

[µs] [pJ/bit] [B]
HP 3.30 106.82

AK
LE 6.54 63.05

452

HP 1.25 40.55
SUB

LE 2.48 23.94
1058

HP 3.88 125.62
MC

LE 7.68 74.15
552

HP 2.14 69.24
MEM

LE 4.24 40.87
40
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Table 6.7: ULSNAP Hardware AES Blocks

Perf. Energy Txr Delay PstaticBlock
[MHz] [pJ/bit] [×1000] [ns] [µW]

AK 370 0.140 28.65 0.21 0.47
MC 281 0.136 14.57 0.57 0.80
S-box - ROM 155 0.351 7.45 3.54 0.84
S-box - GF 192 0.750 5.49 4.83 †0.29
Ctrl 107.7 11.30

†: Encryption and Decryption

In order to incorporate a hybrid implementation into our model as described

in Sec. 3.2 and throughput calculations, we define Thyb as the block encryption

time of our hybrid system. Tload, as seen in Eq. (6.2), is the inherent cost to load

and retrieve data for the accelerator, which we assume is similar to the cost of

accessing memory. TAK , TBS, and TMC are the execution times for the AK, BS,

and MC units, respectively. The coefficients below represent the total number of

executions of each unit for a complete encryption, including the load time Tload:

Thyb = 10Tload + 11TAK + 10TBS + 9TMC (6.2)

Thw = Tload + TE (6.3)

THSH = 10Tload + Thyb (6.4)

Note the difference in the coefficients of Tload between the hybrid execution

time shown in Eq. (6.2) and the hardware execution time shown in Eq. (6.3). The

TE here accounts for the double encryption necessary to send a 29B packet. A

full hardware implementation needs to access the encryption data once whereas

a hybrid implementation must access ten separate times due to the mixed hard-

ware/software implementation. In the situation where AK and MC are imple-

mented in hardware but BS is implemented in software, we actually incur an
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additional ten memory accesses as we need to retrieve the data twice, as shown in

Eq. (6.4). We refer to this combination as “hardware-software-hardware” (HSH).

Table 6.8: Hybrid AES Implementations

ULSNAP MSP430
Perf. tlife

† Memory Perf. tlife
† Txrs

Ctrl AK BS MC
[Mbps] [days] [B] [Mbps] [days] [×1000]

0 H H H H 57.02 165 40 20.05 161 180.70
1 S H H H 6.05 288 40 2.05 275 73.02
2 S H H S 2.27 304 592 0.49 401 58.5
3 S H S H 2.35 373 1098 - - 43.2
4 S H S S 1.87 401 1650 - - 28.6
5 S S H H 2.24 326 492 - - 44.4
6 S S H S 1.39 347 1044 - - 29.8
7 S S S H 1.85 440 1550 0.11 567 14.6
8 S S S S 1.54 478 2102 0.10 614 0.0

†: We assume that 1/λ = 1min, Y = 1.1ms, TT = 672 µs, α = 0.1, and that we
are using a 35mAh, 3V CR1220 battery.

Table 6.8 lists our estimated performance and lifetime numbers for various hy-

brid implementations of AES on ULSNAP and the MSP430. Again, because we

did not have access to the details of the MSP430’s hardware implementation, we

used the various blocks of our AES implementation for ULSNAP instead. The

throughput was calculated by adding the delay of blocks from Tables 6.6 and 6.7

as appropriate. As a validation of our estimates of software block implementations,

the software only approach in Table 6.8, configuration 8, matches the measured re-

sult in Table 6.4 (ULSNAP-C) to within 1%. Similarly, the software only approach

of the MSP430 matches the (TI-C) result from Table 6.4. The TI-C software imple-

mentation fuses the AK and BS steps, so we did not evaluate hybrid combinations

of AK and BS on the MSP430.

We present tlife in Table 6.8 as an estimate of mote battery life, following our

model. We obtain the value via Eq. 3.11 obtaining TE as discussed above and
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assuming an inter-arrival rate of 1/λ = 1min. The static power consumed in state

S1 corresponds to the static power consumption of the microcontroller plus the

static power consumed by any hardware-implemented blocks as shown in Table 6.7.

Our full-hardware implementation is roughly 180k transistors, effectively 30%

of the reported 592k transistors comprising ULSNAP [52]. We assume that the BS

computation is parallelized and requires four S-box. The Ctrl unit is roughly double

the size of the sum total of all individual blocks. Unsurprisingly, Table 6.8 shows

an all-hardware implementation offers the best throughput. The key contributor

to performance seems to be the hardware-based control. Moving to software-based

control of the hardware results in a 10x penalty to throughput. However, a full-

hardware solution also has the lowest mote lifetime as most the time the mote is

idle and static power consumption dominates.

Fig. 6.6a shows the lifetime of various hybrid AES configurations alongside UL-

SNAP as function of the event inter-arrival time (1/λ). For legibility, we omit some

of the hybrid configurations—they cluster together rather tightly. For 1/λ < 4 s,

the hybrid schemes offer better performance than a software-only implementation

with little or no impact in the lifetime of the mote. In contrast, for sparse events

tlife is governed by the static power. For inter-arrival times greater than 5 minutes,

Fig. 6.6a shows a gap in excess of 3x between the hybrid and software counterparts.

One solution to reduce leakage current in the hardware portions of hybrid con-

figurations is to use power gating. The simple addition of cut-off transistors in

QDI circuits can reduce static power consumption by an average of 80% with an

average of 20% performance degradation as explained in Chapter 4 and in [53].

Using these estimated power savings to evaluate the mote lifetime, we obtain the

plots in Fig. 6.6b. The increased lifetime of the hybrid and all-hardware imple-
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(b) Lifetime with Power Gating

Figure 6.6: ULSNAP Lifetime

mentations suggests that our AES implementation can greatly benefit from power

gating, particularly when the mote stays idle for long periods of time.

Figures 6.6a and 6.6b assume that the software portions of the hybrid AES im-

plementations share memory with the host microprocessor, in this case ULSNAP.

If we require dedicated memory for the AES co-processor, we must account for

the additional power consumption of this dedicated memory. We assume 120 pA

of leakage current per bitcell [17]. This additional memory does not improve the

throughput of the AES system, but it does free memory for other tasks on the pro-
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Figure 6.7: ULSNAP Lifetime with Memory Overheads
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Figure 6.8: ULSNAP Lifetime for α ∈ {0.01, 0.1, 0.4}

cessor. Fig. 6.7 illustrates the effect of incorporating the static power consumption

of the additional SRAM as listed in Table 6.7. In this regime, the hybrid modes

actually offer the best lifetime as the high memory requirements of the software-

only mode increase the static power to the point where it is only 10% better than

the all-hardware configuration.

Fig. 6.9 illustrates the effects of the probability of sending a packet, α, on mote

lifetime for a full software and full hardware configuration of our AES implemen-

tation alongside ULSNAP. α = 1 means we always send a packet after receiving a
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Figure 6.9: ULSNAP Lifetime for α ∈ {0.01, 0.1, 0.4}

sensor event. Lower values of α represent less transmissions and thus longer mote

lifetime. What is interesting is that as the inter-arrival time of events increases the

effect of α diminishes. This represents the increasing dominance of static power

consumption for high values of 1/λ. Not shown here is the effect of packet pay-

load size, which looks quite similar to the plots in Fig. 6.9. Intuitively, one can

approximate a larger packet with many smaller packets.
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CHAPTER 7

CONCLUSION

’Begin at the beginning,’ the King said gravely,

’and go on till you come to the end: then stop’

Lewis Carroll

This thesis presents the design of a state-of-the-art of a microcontroller that

fits the computational paradigm found in Wireless Sensor Networks well. We

exploit the ULSNAP architecture to design and implement a chip that provides

high performance, low energy and improved node lifetime over available commodity

processors. Our 90 nm test chip performs in the Pareto-optimal set of the energy-

performance curve. ULSNAP’s event-driven architecture matches the low power,

bursty performance requirements of sensor network applications.

Microarchitectural choices such as splitting the operand buses into a hierar-

chical slow/fast bus design further reduced the energy and improved average case

performance. We maximized the energy efficiency of our memory by banking each

memory module and decoupling the buses, activating only accessed banks. Fur-

thermore, we enabled multiple outstanding memory operations to be executed by

implementing the memory access modules with full buffers. We further improved

the idle power by minimizing the static power consumption of the memory banks.

Additionally, ULSNAP’s timer and I/O coprocessors were optimized to minimize

the power in the quiescent state by, among other things, decoupling their control

from the core, and decoupling control between the available timers.

At the circuit level, we leveraged the strengths of our self-timed circuits. Their

self timed nature means that they are event-driven without any additional control
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overheads. QDI circuits minimize power consumption during idle periods of time

and automatically adjust to variations in voltage and other environmental factors.

This thesis presents measured results for ULSNAP: A fully implemented Ultra-

Low power Event-Driven Sensor Network Asynchronous Processor offering high

performance within a low energy envelope. With respect to the state-of-the-art

processors in its class, ULSNAP offers Pareto-optimal operating points in the

energy-performance space. It achieves 93MIPS at 1.2V and 47MIPS at 0.95V

while using 47 pJ and 29 pJ per cycle respectively.

We adapted a WSN mote battery lifetime model that accounts for the energy

required to process, encrypt, and transmit collected data as well as the energy

consumption during idle periods. We use this model to evaluate the lifetime of a

mote that uses state-of-the-art microcontrollers. Our results show that our test

chip has a lifetime of 2.5 years when events arrive every 10 s and the time to process

and event is 1ms—a common workload pattern in the WSN application space.

Furthermore, we analyzed and designed a cryptographic system that is suitable

for the WSN design space. Cryptography is a critical block within the WSN as

encryption is arguably the first line of defense to protect the confidentiality of data

transmitted over the wireless link.

If throughput is the main concern, our full hardware implementation of AES

delivers 30x net performance over its software counterpart. On the other hand,

a complete hardware implementation is unattractive form the standpoint of mote

lifetime due to the increased in leakage current from the additional transistors.

If encryption throughput is not high-priority, a complete software AES imple-

mentation can offer a 3x increase in mote battery lifetime. Incorporating power
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gating techniques into our hybrid and full hardware designs significantly reduced

the gap in battery lifetime to less than 66%. If necessary, we can provide dedicated

memory resources to the AES implementation but at the cost of increasing leakage

current to the point where a fully software implementation is only 10% better than

a hardware implementation. A hybrid hardware/software implementation gives 6x

net performance improvement, and increases lifetime by 10% over the full software

counterpart.

In this thesis, we advance the state of the art by providing the design and

implementation details of an energy efficient, high performance processor that fits

the wireless sensor node design space. The designs and experiments shown in this

picture will enable a smart, instrumented, and connected world that will weave

smart elements into the fabric of everyday life.

7.1 The future of Wireless Sensor Networks
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APPENDIX A

COMMUNICATING HARDWARE PROCESS

The CHP notation we use is based on Hoare’s CSP [18]. A complete formal

semantics of the language can be faound in van der Goot’s What follows is a short

and informal description.

Simple Statements

• Skip: skip. This statement does nothing.

• Assignment: a := E . This statement means ”assign the value of expression

E to a. a↑ is shorthand for a := true, and a↓ for a := false.

Control Statements

• Selection: [G1 → S1 [] ... [] Gn → Sn]. Where Gi are boolean expressions

(guards) and Si are program parts. Execution stalls until a Gi is true, at

which point Si is executed. The notation [G] is short-hand for [G → skip],

which stalls until G = true. If guards are not mutually exclusive, we use the

vertical bar ∨ instead of[]. The selection statement is assumed to be demonic,

and it is therefore not fair.

• Repetition: *[G1 → S1 [] ... [] Gn → Sn]. Choose Gi = true, execute Si.

Repeat until noGi is true. The notation *[S] is short-hand for *[true → S].

If the guards are not mutually exclusive, the use the vertical bar ∨ instead

of [].

• Send: X !E . Evalute expression E and send result over channelX . Both, send

and receive are blocking, enabling them to be used as both synchronization

and data-communication primitives.
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• Receive: Y ?v . Receive value over channel Y and store variable v .

• Probe: X is a boolean which is true if and only if a communication over

channel X can complete without suspending. Probes are only allowed to

occur in the guards of choice statements.

Statement Composition

• Sequential Composition: S ;T . The execution of this command corresponds

to executing S followed by T . The semicolon binds tighter than the parallel

composition operator “∥”, but weaker than the comma or bullet.

• Parallel Composition: S ∥ T or S ,T . The execution of this command

corresponds to executing commands S and T in parallalel. The “∥” operator

binds weaker than bullet or semicolon. The comma binds tighter than the

semicolon but weaker than the bullet. The parallel execution of CHP process

is assumed to be weakly fair – every enabled action will be given a change

to execute eventually.

• Simultaneous Composition: S •T both S and T . This command corresponds

to the execution of S and T actions that complete simultaneously. Typically

S and T are both communication actions.
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APPENDIX B

INSTRUCTION SET ARCHITECTURE

B.1 State of the Processor

ULSNAP instructions can be one or two words long. The processor has a set of

16-bit general purpose registers, reg[0] ... reg[16].

The instructions are stored in a 4 kB, single-cycle SRAM. Data segments and

memory variables are stored in a 4 kB data SRAM. Each word in memory is 16

bits. All accesses to SRAM are word aligned.

An internal register holds the value of the current program counter PC and a

status register carry holds the output carry of the last arithmetic operation.

B.2 Instruction encodings

ULSNAP implements a 16-bit Load/Store architecture and has a MIPS-like RISC

ISA. All values must be present in the register file before performing an operation

and results are transfered to and into memory using LOAD and STORE instructions.

The list of instruction encodings is shown in Table B.1 and Table B.2. There

are some changes with respect to the original SNAP ISA defined in [29]. The

ULSNAP ISA doesn’t implement complicated timer operations (TCSHIFT, TCREAD),

nor allows to read the status of the the output queue (READ). On the other hand

the ULSNAP ISA has an external instruction to control the external data memory

register LDR.
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Table B.1: Instruction encodings for single word instructions

Instruction 15..12 11..8 7..4 3..0
A B C D

Register-Register ALU operations
ADD 0000 dst src1 src2
SUB 0001 dst src1 src2

ADDC 0010 dst src1 src2
SUBC 0011 dst src1 src2

OR 0100 dst src1 src2
AND 0101 dst src1 src2
XOR 0110 dst src1 src2
NOR 0111 dst src1 src2

SRLV 1000 dst src1 samt
SRAV 1001 dst src1 samt
SLLV 1010 dst src1 samt
SRLI 1100 dst src1 imm
SRAI 1101 dst src1 imm
SLLI 1110 dst src1 imm

Register-Register Timer and Interrupt operations
RAND 1111 dst — 0010

SCHEDHI 1111 dst src 0100
SCHEDLO 1111 dst src 0101

LDR 1111 — src 0110
CANCEL 1111 id 0000 0111

SEED 1111 src 0001 0111

B.3 Calling Conventions

ULSNAP uses LCC compiler toolchain to compile a C program into ULSNAP’s

assembly code. A custom-built assembler builds the object and image files that

can be loaded into ULSNAP on reset. Our assembler and linker automatically

performs some static and peephole optimizations.

The ULSNAP programming specification enforces the calling conventions in

Table B.3. All C or assembly programs should follow these to be compatible with

current and future ULSNAP libraries.
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Table B.2: Instruction encodings for double word instructions

Instruction 15..12 11..8 7..4 3..0
A B C D

Double word instructions
ADDI 1011 dst src1 0000

ADDIC 1011 dst src1 0010
ORI 1011 dst src1 0100
ANDI 1011 dst src1 0101
XORI 1011 dst src1 0110
NORI 1011 dst src1 0111

LOADD 1011 addr dst 1100
STORED 1011 addr src 1101
LOADI 1011 addr dst 1110

STOREI 1011 addr src 1111
BFS 1011 st src1 1010

SETADDR 1011 — src1 1000
Control Instructions

BEQ 1111 src2 src1 1000
BNE 1111 src2 src1 1001

BGEZ 1111 src1 — 1010
BLTZ 1111 src1 — 1011
JAL 1111 dst — 1100

JALR 1111 dst src 1101
WAIT 1111 — — 1110

Table B.3: ULSNAP calling conventions

Register Convention
R0 Always 0
R1 Bulk copy register
R2 Return value, caller saved

R3-R5 Function arguments
R6-R8 Temporaries, caller saved
R9-R12 Register, callee saved
R13 Stack pointer
14 Return address
15 I/O Register
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APPENDIX C

ULSNAP’S DEVELOPMENT BOARD

The ULSNAP development board has the form factor of an Arduino Mega 2560

shield. We use the USB capabilities of the Arduino to connect the ULSNAP shield

to the computer via a virtual serial port.

To measure the power consumed by ULSNAP, the core power supply is con-

nected in series with a 1Ω resistor. The voltage drop is amplified by the MAX208

instrument amplifier. The ADC on the Arduino board is able to measure the volt-

age amplified drop across the 1 ohm resistor. We performed a fine-calibration of

the ADC by empirical tests.

Part Description Value
Capacitor Tantalum Capacitor for Voltage Regulator Output 4.7µF
Capacitor Power supply’s bypass capacitor 4.7µF
Capacitor Temperature sensor’s bypass capacitor 4.7µF
Header 1x2 Right angle header for source meter unit
Header 1x3 Right angle header for custom delay chain
Header 1x4 Right angle header for custom chip select
Header 1x5 Right angle header for custom chip select
LED Power-On LED indicator 3.92mcd
MAX 6627 Temperature Sensor
Push Button Reset Button
Resistor Power-On LED resistor 1.6MΩ
Resistor Power source measurement 1Ω
Switch Power source select
Socket 48pin 48 pin DIP socket for ULSNAP test chip
TI TPS77012 Power Regulator
TI TXB0108 Bi-directional voltage-level translators
MAX4208AUA Instrument amplifier to measure voltage
ULSNAP test chip

Table C.1: BOM for ULSNAP Arduino Shield test board
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Figure C.1: PCB connections to Arduino Mega 2560 board
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Figure C.3: Bidirectional voltage-level translators
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APPENDIX D

CHIP ART

Chip Art refers to the nanometric “art work” drawn into Integrated Cir-

cuits [10]. In the past, chip art thwarted illegal IP infringement by competitors [15].

This is not the case since the Chip Protection Act of 1984. Nowadays, most chip

art exists as a tribute to the design teams that want to leave a mark for their own.

These doodles and letters give a sense of pride to the designers that a signature

gives to an art painter. Notable examples of chip art include the artwork in the

MIPS R4000 chip and “Where is Waldo”, shown in Fig. D.1.

(a) MIPS4000 chip art resembling a license
plate

(b) We found Waldo in a Silicon Graphics
chip

Figure D.1: Samples of chip art commercially available microcontrollers

The stricter DRC-rules, the heavy use of EDA tools, shorter design time cycles,

large engineering teams, and a fierce competition are slowly erasing this esoteric

and sophisticated practice. Figs. D.2, D.3, are a few samples of chip-art from the

prototypes manufactured in this work.
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Figure D.2: Computer Systems Laboratory 2010 logo

Figure D.3: AVLSI Group logo
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