HACKT

Hierarchical Asynchronous Circuit Kompiler Toolkit

David Fang

This manual describes the usage and operation of HACKT’s tools.
This document can also be found online at http://www.csl.cornell.edu/ fang/hackt/hackt.}]
The main project home page is http://www.csl.cornell.edu/ fang/hackt/.
Copyright (© 2007 Cornell University
Published by ...

Permission is hereby granted to ...

http://www.csl.cornell.edu/~fang/hackt/hackt
http://www.csl.cornell.edu/~fang/hackt/

Short Contents

1 Introduction. ..o e e e e e eeeeeeeeooosossssonees 1
2 Compiler . ..o einennnnneeeeeeeeeeseennnnnns 3
3 Shell Interpreter o« v v v v v v v e e ittt et eenns 7
4 DiagnoStiCsS e e v v oo oo oo oo oeeeeeesssssssoonnoocons 9
5 Legacy Compatibility . . o oo oo v v v eennn. 11
Command Index . o v v v v i ittt i i ii it inennnnns 15
Variable Index + o v v e o v v v oot v v oo eeeesoesssocossons 17

Concept Index + v v v o vt it it ieeeeeeoeeeeeeesnnssss 19

11

HACKT Tutorials

Table of Contents

1 Introduction............................... 1
2 Compiler............oiiiiiiiiiiiii... 3
2.1 Compile ... 3
2.2 PTePrOCESSOT . ..ottt ettt et e et e e e 4
2.3 Create. 4
2.4 Allocate 5
2.5 Instance Dump......... .. 5
2.6 Conventionscouueine e 5
2.7 Examples.o 5

3 Shell Interpreter........................... 7
4 Diagnostics.........ccoviiiiiiiiiiinnnnnans 9
O V3 1 o 9
4.2 Object DUump 9

5 Legacy Compatibility 11
51 CAST Flatten ... 11
5.1.1 CFLAT Optionsuini i 11
Command Indexccvvnn... 15
Variable Index 17

Concept Index............ciieiinnnnn... 19

iii

v

HACKT Tutorials

Chapter 1: Introduction 1

1 Introduction

This document is a usage guide for the set of HACKT executables.

hackt is a command to dispatch one of many programs in its collection of tools. The
general usage is:

hackt [general options] command [command arguments]

For example, ‘hackt version’ prints the version and configuration information for the
tools. Currently, there are no general options to hackt, but some may be added in the
future.

Commands will give a brief summary of their options when invoked without command
arguments, or when passed ‘-h’ for help. Some common subprograms also have equivalent
single-name commands that are installed by make install.

The following topics are not covered in this guide:

e language - covered in ‘hac.pdf’, built in ‘dox/lang’, installed in ‘pre-
fix/share/hackt/doc/pdf/’.

e simulators — covered in separate guides ‘hacprsim.pdf’ and ‘hacchpsim.pdf’.

All documents come in the following formats: ‘.pdf’, ‘.ps’, ‘.html’, ‘.info’, installed
in ‘prefix/share/hackt/doc/’.

HACKT Tutorials

Chapter 2: Compiler 3

2 Compiler
TODO: figure of compile flow and phases.

2.1 Compile

The first compile phase produces a parsed and partially checked object file given an input
text (source) file.

haco [options| source object [Program]|
Compile HAC source to object file.

The source file is a text file in the HAC language. The object file, if given, is the result of
the compile. If the object file is omitted, the program just reports the result of complation
without producing an object file.

Options:

-h [User Option]
Show usage.

-I path [User Option]
Adds include path path for importing other source files (repeatable).

-d [User Option]
Produces text dump of compiled module, like hacobjdump in Section 4.2 [Objdump],
page 9.

-f optname [User Option]

general compile flags (repeatable) where optname is one of the following:
e ‘dump-include-paths’: dumps ‘-I’ include paths as they are processed

e ‘dump-object-header’: (diagnostic) dumps persistent object header before sav-
ing

e ‘no-dump-include-paths’: suppress feedback of ‘~I’ include paths
e ‘no-dump-object-header’: suppress persistent object header dump

Dialect flags (for ACT-compatbility):

e ‘export-all’: Treat all definitions as exported, i.e. no export checking.

e ‘export-strict’: Check that definitions are exported for use outside their re-
spective home namespaces (default, ACT).

e ‘namespace-instances’ Allow instance management outside global
namespace (default). Negatable with no- prefixed. ACT mode:
‘no-namespace-instances’.

e ‘array-internal-nodes’ Allow implicit arrays of internal nodes in PRS (de-
fault). Negatable with no- prefixed. ACT mode: ‘no-array-internal-nodes’.

‘ACT’ is a preset that activates all ACT-mode flags for compatibility.
-M depfile [User Option]

Emit import dependencies in file depfile as a side-effect. Useful for automatic dynamic
dependency-tracking in Makefiles.

4 HACKT Tutorials

-o objfile [User Option]
Names objfile as the output object file to save. This is an alternative to naming the
object file as the second non-option argument.

-p [User Option]
Expect input to be piped from stdin rather than a named file. Since the name of the
input file is omitted in this case, the only non-option argument (if any) is interpreted
as the name of the output object file.

haco is provided as a single-command alias to hackt compile’.

TODO: quick explanation of parse errors.

2.2 Preprocessor

hacpp is a preprocessor that expands imports, much like cpp expands #include and other
preprocessor directives. This can be convenient for flattening hierarchies of imported sources
into a self-contained file.

One nice feature is that the output (by default) preserves precise information about
which files were imported, so compiling a flattened source file should result in the same
error messages as compiling the original source file.

2.3 Create

The create phase generates footprints for each complete type once, so that instances of the
same type may share the same footprint. Each type’s definition is sequentially unrolled and
expanded (instantiations and connections) recursively after substituting meta-parameter
arguments. The input object file is the result of haco.

haccreate [options| in-object out-object [Program]|
Further compiles an object file through the create phase.

haccreate is provided as a single-command alias to hackt create.

All programs that normally expect object files as inputs can also invoke the compiler on
a source file with the following options.

-C [User Option]
Indicate that input file is a source, not object file, and needs to be compiled.

-C opts [User Option]
When compiling source, forward options opts to the compiler-driver. Suggestion:
when passing compiler-options on the command-line, wrap in “double-quotes” to
group a list of arguments into a single string in the shell.

! Thus named because we use .haco as the extension for compiled object files

Chapter 2: Compiler 5

2.4 Allocate

The alloc phase expands the entire instance hierarchy top-down, so that every unique in-
stance has its own state in memory. The input object file is the result of haccreate, but
will automatically run create on the object file if necessary.

hacalloc in-object out-object [Program]|
Further compiles an object file through the alloc phase.

hacalloc is provided as a single-command alias to hackt alloc. hacalloc supports
the same options as haccreate.

In summary, the create, and allocate compile phases automatically run the necessary
prerequisite phases where needed. All developed tools should also implement this behavior.

2.5 Instance Dump

We provide a utility to print instance and type information, which can be used by other
programs for performing text-based queries. hacinstdump takes an object file and prints a
table of all instances in the (flattened) hierarchy. The table contains information about the
type of each named instance. The program takes an object file as an argument, and has no
other options.

2.6 Conventions

As a convention, we name our object files according to the last phase with which it was
processed or produced. The tools are actually extension agnostic; you can use whatever file
extensions you like for both source and object files.

e _.haco — compiled only

e .hacf — preprocessed source only
e .haco-c — compiled and created
e .haco-a — compiled and allocated

These suffices can be used to define make rules. Examples of Makefile templates can be
found in the distribution 1ib/mk or installed in prefix/share/hackt/mk/hackt.mk.

2.7 Examples

In this section, we use the following source ‘inv.hac’ as our input example.

defproc inv(bool a, b) {
prs {

a -> b-

“"a -> b+

bool x, y;
inv Z(x, y);
This defines an inverter process inv with public boolean ports a and b. The top-level
declares boolean nodes x and y, which are connected to the ports of instantiated inverter Z.

6 HACKT Tutorials

A more comprehensive description of the language can be found built in
‘dox/lang/hac.pdf’ or installed as ‘/install/share/hackt/doc/pdf/hac.pdf’.

TODO: fill in uses of example

Chapter 3: Shell Interpreter 7

3 Shell Interpreter

The hackt shell is intended as a general purpose tool for manipulating object files, direct-
ing fine-grain control over partial compilation, mechanical program transformations and
analyses, etc. This project is barely begun. It is merely an object of curiosity at the mo-
ment. It currently supports no commands and is, thus, utterly useless. The only feature of
the shell is the ability to escape to the parent shell and run commands. For example,

hacksh> !date
Fri May 26 18:20:47 EDT 2006

Not very exciting yet.

HACKT Tutorials

Chapter 4: Diagnostics 9

4 Diagnostics

This chapter describes some diagnostic commands of hackt tools.

4.1 Version

The version command just tells you the configuration with which hackt was compiled and
installed. The output may looks something like the following:

$ hackt version

Version: hackt 0.1.4-devel-20060508

CVS Tag: HACKT-00-01-04-main-00-79-03-CHP-02-01

Configured with: ’--enable-fun’ ’--with-editline=/usr’
’YACC=/usr/bin/yacc’ ’--prefix=/Users/davidfang/local’ ’-C’
’CC=ccache gcc’ ’CXX=ccache g++’

build-triplet: powerpc-apple-darwin7.9.0

c++: g++ (GCC) 3.3 20030304 (Apple Computer, Inc. build 1640)
AM_CPPFLAGS: -I../../../src -I/usr/include

AM_CXXFLAGS: -pipe -ansi -pedantic-errors -Wold-style-cast
-Woverloaded-virtual -W -Wall -Wundef -Wshadow
-Wno-unused-parameter -Wpointer-arith -Wcast-qual -Wcast-align
-Wconversion -Werror

AM_LDFLAGS: -L/usr/lib

config-CXXFLAGS: -g -02

config-CPPFLAGS:

config-LDFLAGS:

config-LIBS: -ledit -lncurses

lex: flex version 2.5.4

yacc: /usr/bin/yacc

readline: BSD EditLine (histedit interface) ver. 2.9
build-date: Wed May 10 18:24:59 EDT 2006

This information is especially useful for reporting bugs. A list of known successful
configurations is in the top source directory’s BUILDS file. Reports of new configurations
are always welcome.

4.2 Object Dump

hackt also provides objdump as a command for viewing the contents of a compiled object
file as (questionably) human-readable text. The regression test suite uses objdump heavily
to verify the contents of object files as they are transformed through the various compile
phases. Occasionally, it may be useful to the casual or curious user for bug tracking.

hacobjdump object-file [Program]
Prints textual dump of compiled object file object-file. Object file may be compiled
to any phase.

10

HACKT Tutorials

Chapter 5: Legacy Compatibility 11

5 Legacy Compatibility

NOTE: this section is somewhat of redundant with the cast2hac directory documentation.
Please refer to cast2hac.pdf for a guide on migrating to the new hackt tools.

This section is only useful to those who have used the legacy CAST tools. We provide
some tool commands for use with legacy CAST tools. The aim is to provide a bridge from
old tools to hackt.

5.1 CAST Flatten

The old CAST tool chain uses flattened text files as input to other tools. We provide similar
functionality with HACKT’s cflat command, which is also installed under the alias hflat.

hflat mode [options| in-object [Program]|
Emulate the behavior of legacy cflat. Modes and options are explained below.

Instead of reading in the source file directly, it reads a compiled object file. (Later,
we may add an option to read a source file directly.) If the object file is not already
in the allocated state (Section 2.4 [Allocate]|, page 5), then it will automatically invoke
the allocation phase before doing its real work. The options and modes are described in
Section 5.1.1 [CFLAT Options|, page 11.

Starting with our example from Section 2.7 [Program Examples], page 5. we compile
inv.haco first.

$ hackt compile inv.hac inv.haco
We then produce flattened text output with the command:
$ hackt cflat prsim inv.haco

which results the following output, suitable for legacy prsim:

et > llyll_
AL LS uyn+
= Ngn nz g
= nyu "7 p"

This can be piped directly into prsim or saved to a file for later use.

5.1.1 CFLAT Options

General options:

-C [User Option]
Indicate that input file is source, as opposed to an object file, and needs to be com-
piled.

-C opts [User Option]

When compiling input source, forward options opt to the compiler driver.

hflat provides convenient and fine-grain control over the output text format. Options
can be divided into two categories, modes and flags. Flags control individual traits of the
output format, whereas modes are presets of traits, named after specific tools. The presets
are set to emulate the formats expected by the legacy tools as closely as possible. Currently,
the following list of modes is supported:

12 HACKT Tutorials

prsim [cflat option]
prsim output mode.

lvs [cflat option]
LVS [cflat option]
java-lvs [cflat option]

LVS output mode. The java-lvs option is a slight variant from the traditional lvs.

ergen [cflat option]
ergen output mode.

alint [cflat option]
alint output mode.

prlint [cflat option]
prlint output mode.

prs2tau [cflat option]
prs2tau output mode.

connect [cflat option]
connect output mode.

check [cflat option]
check output mode.

wire [cflat option]
wire output mode.

aspice [cflat option]
Aspice [cflat option]
aspice output mode.

ADspice [cflat option]
ADspice output mode.

default [cflat option]
default output mode.

TODO: make table summarizing the flags implied by each preset mode.

Other non-preset options can be used to fine-tune and customize the output format. All
options except the ‘connect-*’ options may also be prefixed with ‘no-’ for negation, e.g.
‘~f no-sizes’ disables printing of sized production rule literals. The following ‘£’ flags are
supported:

no-connect [cflat -f option]
connect-none [cflat -f option]
Suppress printing of aliases.

connect-equal [cflat -f option]

4 i

Print aliases with style: ‘= x y’.

Chapter 5: Legacy Compatibility 13

connect-connect [cflat -f option]
Print aliases with style: ‘connect x y’.

connect-wire [cflat -f option]
Print aliases with style: ‘wire x y’.

include-prs [cflat -f option]

exclude-prs [cflat -f option]

no-include-prs [cflat -f option]

no-exclude-prs [cflat -f option]
Include or exclude production rules from output.

precharges [cflat -f option]
no-precharges [cflat -f option]
Print or hide precharge expressions.

self-aliases [cflat -f option]
no-self-aliases [cflat -f option]
Includes or exclude aliases ‘x = x’.

quote-names [cflat -f option]
no-quote-names [cflat -f option]
Wrap all node names in “quotes”.

node-attributes [cflat -f option]
no-node-attributes [cflat -f option]
Whether or not to print node attributes.

split-instance-attributes [cflat -f option]

join-instance-attributes [cflat -f option]
Determines whether to print instance attributes (including nodes) on a single line
like:

@ "node" attrl attr2 attr3 ...
or one attribute per line:

@ "node" attril
@ "node" attr2
@ "node" attr3

SEU [cflat -f option]

no-SEU [cflat -f option]
Enable single-event-upset mode for selected tool.

check-mode [cflat -f option]

no-check-mode [cflat -f option]
Silences cflat output while traversing hierarchy. Useful only as a diagnostic tool for
debugging.

wire-mode [cflat -f option]

no-wire-mode [cflat -f option]

Accumulate aliases in the form: ‘wire (x,y,...)’

14

dsim-prs
no-dsim-prs
Wraps prs in: ‘dsim { ... }’

sizes
no-sizes
Prints rule literals with <size> specifications.

Preset modes are just combinations of the individual mode modifiers.

HACKT Tutorials

[cflat -f option]
[cflat -f option]

[cflat -f option]
[cflat -f option]

Command Index

Command Index

15

16

HACKT Tutorials

Variable Index

Variable Index

e 4, 11
S 4,11
e R PP 3
e S PP 3
e P 3
PP 3
P 3
0 e e 4
D e e 4

ADspice....... ... 12
alint ... 12
ASPICe. .o 12
Aspice...... 12

CheCK . oot 12
check-modet 13
ToZe) 11 4 L=Yox AN 12
connect—connectuiiiiiiaii.. 13
connect-equal, 12
CONNECE=MOMNE . . o\t vt et ettt et eaean 12
connect—-wireiiiiii., 13

D

17
join-instance-attributes 13
R 12
S 12
no-check-mode 13
NO=CONNECE ...\ttt 12
NO=dSIM=PIrSoovniitnin e 14
no-exclude-prs...............c..ciiiii.... 13
no-include-prs............... 13
no-node-attributes......................... 13
no-precharges 13
No-qUOte—Namesouiininon.n.. 13
no-self-aliases............... 13
no-SEU. 13
NO-S1ZEeS.ttt 14
no-wire-mode 13
node-attributes.............. 13
precharges 13
pPrlint....... 12
Prs2tau...........ooiiiiiiii i 12
Prsim........ 12
QUOte—namescoiiiiierrniiiii.. 13
self-aliasesoiiiniia.. 13
SEU . .o 13
SIZES .ot 14
split-instance-attributes................. 13
Wireo 12
wire-mode i 13

18

HACKT Tutorials

Concept Index

Concept Index

compile ...
compiler ...

19
interpreter 7
L
legacy 11
P
PIEPIOCESSOT . . o v v ve e e e et i 4
shell ... 7
VETSION © o vttt et e 1,9

20

HACKT Tutorials

	Introduction
	Compiler
	Compile
	Preprocessor
	Create
	Allocate
	Instance Dump
	Conventions
	Examples

	Shell Interpreter
	Diagnostics
	Version
	Object Dump

	Legacy Compatibility
	CAST Flatten
	CFLAT Options

	Command Index
	Variable Index
	Concept Index

