The HAC Languge

A boring technical document

David Fang

This manual describes the HAC language specification.
This document can also be found online at http://www.csl.cornell.edu/ fang/hackt/hac.|]
The main project home page is http://www.csl.cornell.edu/ fang/hackt/.
Copyright (©) 2007 Cornell University
Published by ...

Permission is hereby granted to ...

http://www.csl.cornell.edu/~fang/hackt/hac
http://www.csl.cornell.edu/~fang/hackt/

Short Contents

Preface . ..o e 1
GoalS . o e e 3
1 Introduction i 5)
D 1 0 7
3 EXPressions. i 9
A ATTAYS « o vt 13
D PTOCESSES . v e 17
6 Channels....... ... e 19
7T Datatypes 23
8 Namespaceso vt e 25
9 Templates . ..o e 27
10 ConnectionS. « v v v v e 37
11 Attributes . ..o 39
12 Typedefs . .o 41
13 Linkageo 43
14 Communicating Hardware Processes 45
15 Production Rule Set (PRS)o i il 51
16 SPEC Directives oo vi et e 59
A Keywords. .o ovv i 61
B Grammar......... ... 63
Function Indexo 73

Concept Index . ..o e 75

Table of Contents

Preface 1
Goals ... 3
Design Automation........ 3
Design Space Exploration i i 3
ASYNCIIONY . ..o 3
1 Introduction..................., 5
1.1 PUIPOSE . oo 5
1.2 ROOES . 5
1.3 OVEIVIEW . oottt e e e 5)
2 Ty PeS . 7
2.1 Parameters. 7
2.2 Definitions 7
2.2.1 Physical Layout ... 7
2.2.2 NAINES .« oottt 8

2.3 Completeness and Usabilityt 8
2.3.1 Instantiation i 8
2.3.2 Connectionouit ettt 8
2.3.3 Typedefs. ... 8

2.4 Future extensionseeiiiiiiiiiiiii e 8
3 Expressions.............. ... 9
3.1 Range exXpressions.oeee et 9
3.2 Built-in Operatorsot 9
3.2.1 Arithmetic Operators.ccouiiiiiiiiiieiiiieannn.. 9
3.2.2 Relational Operators...........coooiiiiiiiiiiiiiiaann. 10
3.2.3 Bitwise Operators........ .o 10
3.2.4 Logical Operators..........oouuiiiiiieiiiieiieann, 10

3.3 Function expressionseeiieeiiiiiiiiiiiiiii. 10
4 ATTays......... 13
4.1 DENSE AITAYS . oot ettt ettt e 13
4.2 SPATSE AITAYS « o v vttt ettt e ettt 13
4.3 Size-equivalence.............c.o i 13
4.4 Declarations 14
4.5 Referencesoo i 14
4.5.1 Implicit SiZe.....oooi 15

4.6 AgEregates. ... 15

4.6.1 Array concatenation........... i, 15

iv The HAC Language

4.6.2 Array constructioni i 16
4.6.3 Loop concatenationo i, 16

N 111 16
5 Processes............ 17
5.1 Declarations 17
D.1.1 Ports .o 17
5.1.2 Forward declarations................ i, 17

5.2 Definitionst 17
5.2.1 Process definition body........... L 18

6 Channels....................... 19
6.1 Sending and Receivingco i i 19
6.1.1 Connections and Directions...............coooiiiiiia. .. 19

6.2 Fundamental Channel Types...............ooiiiiiiiii ., 21
6.3 User-defined Channel Types...........oooiiiiiiiiiiii.. 21
6.4 ISSUES . ..t e 21
6.4.1 Typedefs..... ..o 21
6.4.2 Channel Relaxed Templatesoooia.. 21

7 Datatypes........... ... 23
7.1 Built-in datatypes...... ... 23
7.1.1 Booleans.ouiiiiiiii 23
T.1.2 Integers.o iiiin e e 23

7.2 Enumerations............ooiiiiiiiii 24
7.3 User-defined datatypes.........coouiiiiiiiiiiii .. 24
7.3.1 Declarations ... 24
7.3.2 Definitionso 24
7.3.3 VaOWS e ottt 24

8 Namespaces..................iiiiiiiiiii, 25
8.1 Identifiers....... ... 25
8.2 Importing. ... oot 25
8.3 Resolutiono 25

Bid ISSUCS . oot 26

9 Templates.............. 27

9.1 Terminologyovi 27
9.2 Forward declarations...............ooiiiiiiiii 27
9.2.1 Template signature equivalence........................... 27

9.3 Default values........... .. 28
9.4 Type-equivalence.o 28
9.4.1 Template Examples, 30

9.5 Type Parameters........ ... i 31
9.6 Template Template Parameters............... 31
9.7 Template Specialization.............. ... i, 32
9.8 Partial Ordering of Specializations............................. 32
9.9 Template Argument Deduction............... 32
9.10 Template Definition Bindings o ... 32
.11 ISSUES . e 33
9.11.1 Relaxed Parameters..............cooiiiiiiiiiiiinnnn.... 34
9.11.2 Template Parameter References 34
9.11.3 Template Specializations 34

912 FUubureooii i 35
10 Connections, .. 37
10.1 Instance References.......... i, 37
10.2 AASES. ..ot 37
10.3 Port Connectionscouuriiiiiiieeeiiiiiiien... 37
10.4 TImplicit Ports.o 38
11 Attributes.............. 39
11.1 Bool Attributeso 39
11.2 Channel Attributeso i 40
11.3 Process Attributes...........c.oo i 40
12 Typedefs............ 41
12.1 Type-equivalenceouuiiiiiiiiiiiiiee e 41
12,2 QUESHIONS . oottt 42
13 Linkage........... 43
13.1 Visibiliby ..o 43
13.2 Ordering. ..o 43

13.3 QUESHIONS . . oo 43

vi The HAC Language

14 Communicating Hardware Processes....... 45
141 EXPressiOnSootttttnn e 45
14.1.1 Value References............coo . 45
14.1.2 Operators.o e 45
14.1.3 Bit SHCES - o oo ot e 46

14.2 Channels 46
14.3 Statements 46
14.3.1 Communicationsuoutree i 46
14.3.2 ASSIgNMENtS ovt i 47
14.3.3 Walb . oo 47
14.3.4 Compositionoouu i e 47
14.3.5 SKID « o 47

14.4 Flow Control 48
14.4. 1 LoOPS. .ottt 48
14.4.2 Guarded Commands ..., 48
14.4.3 Deterministic Selection......... ..., 48
14.4.4 Nondeterministic Selection 48
14.4.5 Do-While 49

14.5 Metaparameter loop constructs................... 49
14.6 BEXGenSIONS . . oottt 49
14.6.1 Function Callsc o 49

15 Production Rule Set (PRS) 51
15,1 BasiCS .ot 51
15,11 SIZINg . .t 51
15.1.2 Internal Nodes....... ... 52

15.2 Attributes 53
15.2.1 Node attributes........ ... 53
15.2.2 Rule attributes........ ... i 53
15.2.3 Literal attributes........... 55
15.2.4 Operator attributes........... ... 55

15,3 LO0DS . -ttt e 56
15.4 BEXGONSIONS . ottt ettt e 56
15.4.1 MaCrOS. ..ot 56
15.4.2 Pass-gates 57
15.4.3 PRS Supply Overridesoooviiiiiiiii ... 58
15.4.4 PRS Substrate Overrides............ 58

15.5 OPLIONS . ..ttt 58
16 SPEC Directives 59
Appendix A Keywords 61
Appendix B Grammar.......................... 63

Function Index 73

vii

Concept Index............. 75

Preface 1

Preface

You have acquired a scroll entitled
’irk gleknow mizk’(n).--More--

This is an IBM Manual scroll.--More--

You are permanently confused.
— Dave Decot

Why must every document have a preface?

Goals 3

Goals

Designing a new language is not a task for the faint-hearted. There has to be sufficient
motivation to justify such labor:

e No existing language (or composition thereof) meets the requirements demanded.
e A workaround atop of existing languages is deemed to be insufficient.
e For fun.
As selfish as it may seem, the HAC language is designed to meet a very specific require-
ment of the author. The author’s desire is to provide a language to facilitate:
e FEase and effectiveness of (asynchronous) VLSI design automation

e Ease of automatic design space exploration (at high architecture level and low level
circuits)

Design Automation

What do other languages lack? Asynchrony? Heirarchical information.

When charged with the task of designing a circuit component, one is usually given
a functional specification to meet. The difficulty often lies with coming up with fitting
functional specification — knowing a priori the context in which a component is used.
Without the context in which a component is used, it is futile to optimize the design of that
component. Often, one functional specification for a component is really meant to be used
in multiple contexts, in which case, one would design a different version for each context.

“Heavy-tree” of definition uses (like calling context stacks).
Ramble ramble ramble...
Shape and form factors...

Optimization using dynamic performance information...

Design Space Exploration

The ultimate ambition for this project is to be able to automatically explore the design
space of implementations of significantly complex functional specifications.

Program transformations.

Design choices fall into two major categories: 1) Quantitative (How many? How wide?
How large?) and 2) Qualitative (What kind?).

Quantitative parameters are simply traits that can be described quantitatively: How
many buffers? How wide a datapath?

Examples of qualitative parameters: What kind of buffer? What protocol or reshuffling?
Which kind of adder? Whether or not to use a speculative path? Whether or not to
introduce resource arbitration? Parallel or serial?

Objectives. Area, energy, performance, efficiency. How about aesthetics and simplicity
(design time)?
Asynchrony

So what does asynchronous VLSI have to do with deciding to use a new language?
Verilog and VHDL shortcomings... Other existing (public) async. synthesis tools.

Chapter 1: Introduction 5)

1 Introduction

But in our enthusiasm, we could not resist a radical overhaul of the system, in
which all of its major weaknesses have been exposed, analyzed, and replaced
with new weaknesses.

Bruce Leverett, “Register Allocation in Optimizing Compilers”
In the beginning, there was CSP.
This document describes the language specification for the HAC Language.
Should be largely implementation-independent. But we discuss some of the issues.
Our implementation is a multi-phase compiler with four phases:
e Compile — like precompiling modules
e Link
e Unroll — hierarchical expansion of top-level instantiations.
e Finalize — unique instantiation after connections.
Compile-time is ...
Link-time is ...
Unroll-time is ...

Finalize is ...

1.1 Purpose

What is the purpose of HAC? What is the meaning of life?
What this IS:

e a hardware description language

What this IS NOT:

e a sequential programming language

1.2 Roots
The HAC language is based on the CAST (Caltech Asynchronous Synthesis Tool) language.

Discuss limitations. Hierarchical information was lost, as a result of flattening identifiers
into strings.

Religious differences, much like the vi versus emacs holy war, led to a divergence of
implementations and interpretations.

1.3 Overview

In Chapter blah we cover blah. In Chapter foo we cover foo.

Chapter 2: Types 7

2 Types

In HAC, there are four classes of types to use: parameters, datatypes, channels, and pro-
cesses.

2.1 Parameters

Parameters differ from the others in that they don’t correspond to any physical instances;
they are merely user-manipulated values. Currently, there are only two (built-in) parameter
types: pint, which is an integer value, and pbool, which is a boolean value.

Parameters may be set no more than once, and they must be initialized before they are
used. Using uninitialized parameters is an error.

We cover templates more in-depth in Chapter 9 [Templates|, page 27. HAC supports
parametric types, or templates, much like C++. Terminology: a template definition (or just
template) is a parameterized definition. User-defined datatypes, channels, and processes
may be parameterized. Currently the only types that may appear in template signatures are
parameters and arrays thereof. Later we may add support for template template arguments,
muahahaha.

2.2 Definitions

random notes, please pardon the lack of order... we really need to re-organize this document,
I know.

Consider introducing templates up front...
Describe definition and type-system, bottom-up, from instantiations?

TODO: make the following distinctions: A physical definition corresponds to the com-
plete description of a particular implementation. Physical definition has its own concrete
layout map that translates name (possibly with index) to offset. (Users never directly deal
with concrete layout maps.) Non-template definitions have only one trivially-generated con-
crete layout map. Template definitions, however, may have multiple layout map templates,
among which one is selected to generate a concrete layout map for each instantiation. Layout
templates are just value- and type-parameterized layout descriptions. (Multiple layout tem-
plates arise from partial and full specializations; a generic template definition contributes
one layout template.)

A type can either be a reference to a non-template definition (which may be built-in) or
a reference to a template definition with a set of parameters.

STALE: Two (non-template) types are equivalent if and only if they refer to the same
non-template definition. In Chapter 9 [Templates|, page 27 we extend the notion of type-
equivalence to cover types with templates.

2.2.1 Physical Layout

Definitions of physical entities invariably contain some table mapping a logical member or
port name to the location of the desired member. Such is the typical implementation of
data structures in traditional programming languages. Non-template definitions have only
one table.

8 The HAC Language

Chapter 9 [Templates], page 27 discusses how templates affects this view of structures’
layout tables. Template definitions introduce table-templates (necessary when members’
types and sizes depend on template parameters). Each complete template definition (all
arguments supplied) uses follows one table-template to generate a final layout table.

2.2.2 Names

The name of a plain non-template definition refers to the one definition only. (OK, that
made no sense whatsoever.) The name of a template definition, however, refers to a family
of definitions.

2.3 Completeness and Usability

In HAC, there are three levels of completeness for definitions.

1. A definition is declared if its template signature (which may be empty) has been defined.
Forward declarations of a type only specify the name and template parameters, and no
other information.

2. A definition is signed if it is declared and its public ports interface (which may be
empty) has been defined.

3. A definition is defined if it is signed and its body has been defined.
NOTE: what about definition bindings?

Since type information only refers to template parameters, a type may refer to any
declared definition.

2.3.1 Instantiation

An instantiation is the creation of definition into a physical object.

2.3.2 Connection

See Chapter 10 [Connections|, page 37.

2.3.3 Typedefs
See Chapter 12 [Typedefs|, page 41.

2.4 Future extensions

Support ‘typeof ()’ operator and ‘sizeof ()’ operator.

Chapter 3: Expressions 9

3 Expressions

Expressions live in the realm of parameters and datatypes. Compile-time meta language.
Boolean.
Integer.
Real.
String.

3.1 Range expressions
Range expressions are used to index into arrays.
x[0..3]
references the first four elements of array x.
Limits: interpretation of negative ranges? Are we allowing negative indices?
Implicit ranges.

Explicit ranges. Q: does x <= y? If we allow negative indices then yes, because we need
to be able to express empty ranges, when x > y.

Compile-time (meta-language) interpretation.

See chapter on compile-time flow-control (loops and conditionals).

3.2 Built-in Operators

The HAC supports the typical set of arithmetic, relational, logical, bitwise, and negation
operators on primitive types.

Operator precedence follows that of the (ANSI/ISO) C Language.

3.2.1 Arithmetic Operators

The arithmetic binary operators work on integers and reals:

+ addition

- subtraction

* multiplication
/ division

yA modulus

The lone arithmetic unary operator negation:

- negate

10 The HAC Language

3.2.2 Relational Operators

Relational binary operators work on integers, reals, and strings. For strings, less-than is
interpreted as the left operand being lexicographically before the right operand.

== equiality

I= inequality

< less-than

<= less-than-or-equal

> greater-than

>= greater-than-or-equal

3.2.3 Bitwise Operators
Bitwise binary integer operators.
& AND

| OR

" XOR

- NOT

3.2.4 Logical Operators
Boolean binary logical operators.
&& AND

] OR

Note that there is no exclusive-OR operator, use the != operator as a substitute.

Boolean logical negation
! NOT

3.3 Function expressions

The HAC language supports function calls in expressions. Supported argument types and
return types include integer, boolean, real (float, double), and strings.

strcat args... [Fucntion]

sprint args... [Fucntion]
Stringify all args and concatenate into a single string (returned). This can be used
to convert argument types to a string. Does not include terminating newline.

bcond zab [Function]
zcond zab [Function]
rcond zab [Function]
strcond za b [Function]

Conditional expression, for boolean, integer, real, and string rvalues, respectively. If
z is true, return a, else return b. NOTE: both expressions a and b are evaluated
unconditionally.

Chapter 3: Expressions 11

zmin a b [Function]
zmax a b [Function]
rmin a b [Function]
rmax a b [Function]

Returns the minimum or maximum of two values. zmin and zmax take and return
integers. rmin and rmax take and return reals.

strtoz str [Function]
strtob str [Function]
strtor str [Function]

Convert string str to an integer, boolean, real, respectively. Throws run-time excep-
tion if conversion fails.

rtoz real [Function]
Convert/cast real-value into integer value. Recommend calling ceil or floor before
passing to this function.

ztor real [Function]
Convert/cast integer-value into real value.

The following math functions are exported from the vendor’s ‘1ibm’ library, which in-
cludes most symbols from ‘<math.h>’. Arguments and return types are real-valued unless
noted otherwise.

e abs — absolute value

e fabs — absolute value

e ceil —round up

e floor — round down

e fmod — modulo (remainder)
e sqrt — square-root

e exp — exponential

e log — natural logarithm

e logl0 — base-10 logarithn
e pow — power function

e ldexp —

e sin — sine

e cos — cosine

e tan — tangent

e asin — arcsine

® acos — arccosine

e atan — arctangent

e sinh — hyperbolic sine

e cosh — hyperbolic cosine

e tanh — hyperbolic tangent

Chapter 4: Arrays 13

4 Arrays

In many languages, arrays are useful for collective or repetitive constructs. In HAC, arrays
come in two flavors: sparse and dense.

4.1 Dense arrays

Dense arrays, which may be multidimensional, have the constraint that each dimension is
precisely covered by a set of contiguous indices, expressible in the form [a..x] [b..y]. The
lower index of each dimension need not start at 0.

The syntax for dense arrays is similar to that of C declarations, with a few extensions
discussed in Section 4.4 [Array Declarations|, page 14. The following examples are all dense
declarations, resulting in densely packed collections:

Dense array declarations:

pint y[2][2]; // y is dense 2D
pint N = 5;

int bar[4]1[5]1[N]; // bar is dense 3D
int z[2..6]1[3]; // z is dense 2D

4.2 Sparse arrays
A sparse array, on the other hand, is a generalization of a (possibly multidimensional) set,
whose indices need not be continuous.

One feature of HAC is that one may arbitrarily extend arrays, as sets of indices, with
multiple declarations. A dense array can be made sparse by adding indexed instances that
break the dense condition.

This example declare collection q with two statements, resulting in a sparsely poplulated
(sparse) collection.

Sparse array from declarations:

int q[2][2][2];
int q[1]1[1]1[3..3]; // result is sparse

A sparse array can be populated densely by filling in indices to satisfy the dense condition,
Dense array from declarations:

pint ql1..1]1[0..1]1[2..3];
pint q[1][1][2..3];
pint q[1][1..1]1[2..3]; // result is dense

The only constraint is that one cannot re-instantiate an index that has been previously
instantiated.

4.3 Size-equivalence

Two arrays are size-equivalent if the following are true:
1. The number of dimensions match.
2. Both are densely packed.

3. The size of each dimension is equal.

14 The HAC Language

The range of indices covered by each dimension need not be equal. Range-equivalence
is a stronger relationship that requires that the respective upper and lower bounds of two
arrays match.

Any array that is sparse cannot be size-equivalent to any other array, even if the set of
indices contained are identical!

When we refer to instances as being type-equivalent, we also mean that they are size-
equivalent. A connection between two instances is legal if and only if they are type-
equivalent and size-equivalent. In Chapter 10 [Connections], page 37, we discuss connections
more in-depth.

4.4 Declarations

Arrays of any type (parameters, channels, processes, datatypes) are declared the same way.
Two syntaces are available for declarations. For example, a 1-D array may be declared
using:

e type identifier [range 1 (where range : pint .. pint)

o type identifier [pint 1 (= type identifier [0..eval(pint)-11)

The first form explicitly specifies the range to instantiate, whereas the second form implicitly
starts instantiating from 0 and ends at one less than the evaluated integer argument. The
second form is just a convenient syntax for a common construct.

Multidimensional arrays are declared with multiple dimension specifiers. Each dimension
of a multidimensional array may be specified using either style.

Instance declarations that extend an existing array are no different, as long as the added
range doesn’t overlap with previous declarations.

Object implementation detail: Ranges of the second form are expanded out in the in-
termediate format.

Tracking the state of instantiations w.r.t. references.

4.5 References

Referencing arrays can be a little tricky. One may reference dense subsets of either sparse
or dense arrays by specifying the precise range of each dimension. An error occurs if not
every instance referenced has been instantiated.

For example, given the declaration int z[100], the reference z[0..9] would refer to
the 1-D array of length 10 containing z[0] through z[9]. z[0..0] refers to the 1-D array
of length 1 containing z[0], which is not size-equivalent to z[0], a 0-D (single instance)
reference to z[0], because the number of dimensions do not match.

Indexing an array with a single pint results in a size-type of one less dimension, in other
words, every dimension singly indexed is collapsed. Dimensions indexed with an explicit
range are preserved. Consider the following examples, given that y is a 2-D array:

y[i] [j] is a 0-D array, or single instance

y[i..11[j] is a 1-D array of size 1

y[il[j..j] is a 1-D array of size 1

yli..1i1[j..j] is a 2-D array of size 1 x 1

Chapter 4: Arrays 15

4.5.1 Implicit size

For convenience, one may refer to the entire collection of an array with just the name of the
instance. However, such an implicit collection reference is valid if and only if the implied
collection (or sub-array) is densely packed.

some valid and invalid examples References with collapsing dimension:

int y[3][4][5];

int z[2][3];

z[0..1][0..2] = y[2][2..3][0..2]; // y ref. collapses 1st dim.
z[0..1]1[0..2] = y[1..2][1..3]1[3]; // y ref. collapses 3rd dim.
z = y[0][2..3][0..2];

int x[2][3];

X = z;

(TODO: split the above example into several small ones...)

The idea of implicit collections extends to higher dimensions as well. Supposing the
first m out of n dimensions are indexed, with k unspecified dimensions, then the number
of dimensions of the reference is m — d + k or n — d, where d is the number of collapsed
dimensions in m. In addition, for such a reference to be valid, the set of subarrays rooted
at the nodes indexed by the first m dimensions must all be range-equivalent, not just size-
equivalent. Implicit array references that do not satisfy this are considered errors.

[tons of examples]

4.6 Aggregates

For convenience, we often want to reference a collection of instances or expressions, and
group them into the same entity. This section describes the various modes of aggregate
references supported by the HAC language.

complez-expr-term : array-construction | loop-concatenation | simple-expr

(Here, simple-expr is actually a shift-expr in the grammar, to eliminate ambiguity with
repsect to the < and > operators, which also wrap around template arguments.)

The following subsections explain the various array-related constructs.

4.6.1 Array concatenation
The syntax for concatenating arrays:
array-concatenation : array-concatenation # compler-expr-term | complex-expr-term

Semantics: The result is an array of the same dimensionality as its constituents, but
the size of the first dimension is the sum of the first dimension of its constituents. The
constituents, therefore, cannot be scalars. In 2 or higher dimensions, the sizes of all trailing
dimensions (past the first) must match to form a valid concatenation. This construction is
valid for both meta-expressions and instance-references.

Example: 1D-arrays of size [M], [N], [P] would be concatenated to form a 1D-array of
size [M+N+P]. 2D-arrays of size [M][Q], [N][Q], [P][Q] would be concatenated to form a
2D-array of size [M+N+P][Q].

Status: implemented

16 The HAC Language

4.6.2 Array construction

The syntax for building higher-dimension arrays:

array-construction : { construction-list } construction-list : construction-list , complex-
expr-term | complex-expr-term

Semantics: This construct takes N-dimension references and produces an N + 1-
dimension array of references. Technically, each element is first promoted one dimension
(creating an N + 1-dimension array with leading dimensions size [1]) and the results are
then concatenated. The following are equivalent: { x, y } vs. {x} # {y}. The dimension
constraint for matching trailing dimensions also applies here. This construction is valid for
both meta-expressions and instance-references.

Example: This is most commonly used for grouping scalars into a 1D-array.

Status: implemented

4.6.3 Loop concatenation

The syntax for loop-style concatenation:

(# : identifier : range : complex-expr-term)
Semantics:
Example:

Status: not yet implemented, low priority.

4.7 Issues

Interpreter vs. compiler.

Tracking what instances are available at the point-of-reference.

Chapter 5: Processes 17

5 Processes

Processes are the building blocks of concurrent programs. In HAC, processes describe the
execution of a single type of entity. The behavioral description can be very high-level, or it
may be as detailed as transistor netlists.

5.1 Declarations

One may declare a new type of process without specifying its definition, like a prototype
in C/C++. A process declaration contains only the name of the process type, and a port
specification with an (optional) list of formal instances.

5.1.1 Ports

A process declaration may be repeated any number of times as long as the port formal
instances are equivalent.

Two port formal instance lists are equivalent if and only if the following are true:
1. The list contains the same number of formal instances.
2. Each formal instance (in order of each list) is type-equivalent (and size-equivalent).
3. Each formal instance has the same name.
Unlike C, where formal identifiers are optional in prototypes, port formal lists require

names for each instance. This allows one to reference a process’s ports individually before
the process is defined.

Unlike normal instantiations found in a namespace or definition body, formal instance
arrays may not be extended with re-declarations. Since they may only be declared once,
they must be densely packed.

Process port types can also be further qualified with direction annotations to indicate
whether a port is an input or output.

defproc foo(bool? in; bool! out) { ... }

The connectivity rules for bools, channels and datatstructs vary slightly. For bools,
direction constraints are checked against production rule set (PRS) blocks. Channels obey
a point-to-point connection rule: they must be connected to no more than one producer,
and no more than one consumer. Data-structs may have driven by one producer, but may
fanout (share) to an arbitrary number of (read-only) consumers.

5.1.2 Forward declarations

Only the name of the process type is declared.
Also include template signature, covered later.
Not yet supported.

5.2 Definitions

A process definition specifies a body in addition to a port specification.

If a process definition is preceded by a declaration with the same name, then the defini-
tion’s port specification must match those of the prototype, i.e. each port formal instance
must be type-equivalent between the declaration and the definition. Likewise, declarations
that follow a definition must also declare the same port formal instances.

18 The HAC Language

5.2.1 Process definition body

The body of a process definition describes a sequence of actions taken by the process.
Refer to CHP chapter, appendix.
Also HSE, PRS.

Chapter 6: Channels 19

6 Channels

Processes communicate to each other via channels. Channels are an abstract notion of a
point-to-point medium of communication between sender and receiver. (HAC does not yet
support multi-sender or multi-receiver communication primitives.)

6.1 Sending and Receiving
Without going into the details of channels, we can define a notion of directionality for
channels. Suppose we have some channel type chan(bool).

chan(bool) X;
chan?(bool) Y;
chan! (bool) Z;

This declares a channel X with unspecified direction (nondirectional), Y as a read-only
(receive-only) directional channel, and Z as a send-only directional channel. Send-only
and receive-only channels are the most useful in process port declarations — what use are
uni-directional channels in the global or local scopes!?

6.1.1 Connections and Directions
What are legal connections between channel instance references? Channels have directional
connection semantics. Two value producers cannot be aliased, nor can two consumers.
Q: Should legal programs be restricted to connecting at most one-receiver to one-sender?
A: Yes, until we support shared channels (see below).

Q: Should dangling channels (one-way only) be allowed, rejected, or warned? Does not
count definition ports, which are assumed to be connected.

Clarification: Channel directions indicated in port declarations only dictate which di-
rection one cannot connect to locally.

We use the following example program template to answer questions.

defproc inner(chan(bool) A; chan?(bool) B; chan!(bool) C) { ... }
defproc outer(chan(bool) P; chan?(bool) Q; chan! (bool) R) {
inner x(...), y(...);

}
e x(P,Q,R), y; — legal
e x, y; x.A =P; x.B=0Q; x.C =R - legal, equivalent to the previous
e x, y(x.A, x.B, x.C); — error: two receive ports being aliased
e x(P,R,Q), y; — error: connecting send-only to receive-only channel
e x, y(x.A, x.C, x.B); — error: equivalent to above
Goal: precise set of rules for channel connections. Q: does it depend on whether or not
referenced channel is local vs. port?

Proposal: a read-only port can take a directionless or read-only port (forwarded) channel
as an argumnent. (Likewise for send-only ports.) (Update: accepted.)

1 Should multi-module linkage ever be specified and implemented, a receive-only channel in one module
could connect to a send-only channel in another module.

20 The HAC Language

Should we allow alias connection syntax for channels? Aliasing is a symmetric relation,
whereas port connections need not be. Yes, but with the following additional semantic
constraints:

Proposal: Unidirectional channels should not be referenceable as aliases, only connected
through ports. Only nondirectional channels may use alias syntax. Thus, directional chan-
nels may only be connected by passing port arguments. Consequences: every physical
channel must be connected to at least one nondirectional channel. A send-receive pair must
be connected using a nondirectional channel of the same type. (Status: obsolete, in favor
of the proposals below)

Proposal: A nondirectional channel may be connected to only one read-only channel
and only one send-only channel. (Update: accepted, with possible exception of explicitly
shared channels, proposed below.) The following example would be rejected:

defproc bucket(chan?(bool) S) { ... }
chan(bool) R;
bucket a(R), b(R);

Implementation detail: As aliases are built using a union-find, make sure the canonical
node always knows what direction of channels have been connected (propagation). We will
track this with a set of flags indicating whether a channel is already connected to a producer
or consumer. Note, however, that send/receive use of a channel in CHP body counts as
connecting a consumer/producer, respectively. Thus, channel connection checking should
include a final pass over the CHP’s unrolled footprint.

Proposal: Reject local channel declarations with directional qualifiers. Rationale: It
doesn’t make sense to have a uni-directional channel in a local scope because any connection
or use thereof would result in a block. (Could this be useful for debugging, e.g. causing
intentional deadlock?)

Proposal: Reject dangling channels. Channels that are missing connection to a producer
or consumer should be rejected. Basically, when a channel is deduced as dangling, at least
a diagnostic should be issued. Resolution: issue warning diagnostic, without rejecting
outright. Eventually, it is up to the final tool to accept or reject dangling connections.

Proposal: Shared channels: Thus far, we’ve described one-to-one channels where pro-
ducers and consumers are exclusively paired. In some exceptional circumstances one might
desire to share a channel among multiple senders or multiple receivers, where exclusive
access is to be guaranteed by the programmer. The following semantics are proposed for
sharing channels: A channel is allowed to be connected to multiple receivers, if and only
if all participating receivers agree to share, by some implementation of ‘agree.” Likewise,
multiple senders may share a channel, if and only if all participating senders agree to share.
One end of communication on a channel is indifferent to whether or not the other end is
shared; a non-shared sender however may connect to shared receivers, and a non-shared
receiver may connect to shared senders; To mix shared and non-shared uses on the same
end is considered an error.

Rationale: Since channel sharing is exceptional, we want to prevent inadvertent sharing
of channels. Non-shared channels expect exclusive use of the channel, so to share them
would violate the fundamental assumption.

Syntax: a port declared with ?? or !! indicates that the channel may be shared (by
receiving or sending). A 77 port channel may be connected locally to multiple receivers, and

Chapter 6: Channels 21

a !'! port channel may be connected locally to multiple senders. When referenced externally,
as a member of process, 77 ports may share the same channel as multiple receivers, and !!
ports may share the same channel as multiple senders.

TODO: examples.

Q: should process aliases be allowed, if processes declare directional channel ports?
(Without further modification, they are rejected when attempting to connect ports re-
cursively.)

defproc sink(chan?(bool) X) { }
sink x, y;
x = y; // results in x.X = y.X
Q: What is the initial ‘connected’ state of a non-directional channel port (inside defini-
tion)? A: a read-only port is assumed to be connected to a producer, and a write-only port
is assumed to be connected to a consumer.

Q: Should local ‘connected’ state information be propagated from formal collections’
aliases to actual collections’ aliases? With this, channels that are locally dangling can be
properly connected hierarchically. A: Yes, we propagate local connectivity summaries up
through formals to initialize the connectivity state of substructure actuals for more precise
hierarchical alias analysis. This may help check connectivity of non-directional channels.
NOTE: this would also apply to relaxed actuals, and is a necessary step towards prop-
erly implementing them (a general mechanism to propagate local information externally).
TODO: illustrative examples.

Q: Do we allow a channel (member of an array) to be referenced by both meta-parameter
and nonmeta-parameters? No. Rationale: Nonmeta indexed channels introduce another
difficulty, as they cannot be analyzed at compile time... Effectively, this restricts mixing
of meta-aliasing and nonmeta-referencing, at least for channels, variables may be another
issue. This issue is related to alias disambiguation.

6.2 Fundamental Channel Types

Until now, we’ve used chan(bool) without discussing its meaning.

6.3 User-defined Channel Types

User-defined channel types are dsecriptions of physical implementations of abstract channels
and interfaces.

6.4 Issues

This section is the most of asked (but not necessarily answered) questions pertaining to the
channel aspects of the HAC language.

6.4.1 Typedefs
Q: Should channels be typedef-able?

6.4.2 Channel Relaxed Templates

Q: Should channels ever involve relaxed template arguments? A: No. Can’t see a good
reason for allowing channel type to vary within a higher dimension collection. This applies

22 The HAC Language

recursively to data-types which fall into the channel’s type specification. Can processes
every be involved in channel type? Probably not.

Chapter 7: Datatypes 23

7 Datatypes

Datatypes are physical representations of information. Or not.

TODO: this must spell out structs and user-defined datatype implementations as distinct
notions.

7.1 Built-in datatypes

Currently, HAC has two built in datatypes: bool and int. These are not to be confused
with the parameter types pbool and pint. A bool represents the state of a physical or
logical node. An int is simply an array of bools with an integer interpretation.

7.1.1 Booleans

In the nonmeta language, assigning a pbool value to a bool is common and legal. The
compiler should eventually resolve all meta-parameter values to constants, which would
result in assigning a boolean constant to a bool data instance.

In the following example, the constant<true> and constant<false> types would un-
roll as one-time assignments to different values. (See Chapter 14 [CHP], page 45, for the
description of the CHP language.)

template <pbool B>

defproc constant(bool b) {
chp { b :=B}

}

Nonmeta operators: e.g. in CHP.

Defect: Currently bool is overloaded to mean different things in different contexts.
It is (tentatively) both a physical type representing a single node or net, and abstract
data type representing a boolean value (whose implementation may be multi-node, such
as dual-rail.) In a data type context, bool is synonymous with int<1>. There is an
ambiguity with ‘defproc foo(bool b) {...}’, where it is not known without additional
context whether bool refers to the physical type or the data type. Until implementation-
interface semantics are better defined and implemented, we must allow CHP to manipulate
physical bools directly. Eventually, we would like an unambiguous use of bool, which may
require introducing a typedef for int<1>, such as dbool, either built-in or library-defined.

7.1.2 Integers

The int type can take an optional width parameter that specifies the physical number of
bits used to represent the integer. An integer value need not necessarily be encoded in two’s-
complement; one may use more bits to encode more abstract values (like “not-an-number”),
or employ error-correcting codes. The default width of an int is 32'. Technically speaking,
int is a built-in templated (parameterized) datatype definition. Templates are discussed in
more detail in Chapter 9 [Templates|, page 27. The specify an int’s width, one can write
int<pint>.

For integer type-checking in the nonmeta language, the assignment of a pint value or
constant to an int of any width is legal. Implementation detail: this is accomplished by
using int<0> as a magic width type for meta-valued integers and constants.

132 was chosen arbitrarily.

24 The HAC Language

Arithmetic and relational operators: In CHP, the standard arithmetic operations on int
types interprets the bits as signed two’s-complement integers. Operator overloading is not
yet supported for user-defined datatypes, but may be in the future.

Update: int<1> is equivalent to bool in a data type context.

7.2 Enumerations

Enumerations are sets of values associated with user-specified names. The value members
of an enumeration represent a set of logical values that only have meaning in the enumer-
ation’s context, i.e. they are not publicly observable values. (This is unlike C, in which
enumerations can take integer values that can be passed to and from integer variables.)
Enumerations are particularly useful for specifying control and data interfaces between
communicating processes. Think of enumerations as tags that can be understood by the
sender and receiver of the enumerated type.

The only values that an enumerated instance can take are those specified in the enumer-
ated type. Thus one can never assign an integer or boolean value to an enumeration, nor
can one assign an enumerated value to an int or \bool\ or other user-defined type. One
can only compare enumerated values of the same enumerated type.

There is no notion of equivalence between enumerated types (outside of typedefs,
Chapter 12 [Typedefs|, page 41).
7.3 User-defined datatypes

In HAC, one can define arbitrarily complex datatypes. User-defined datatypes resemble
structs in C.

Actually, the user-defined datatype implementations are NOT the same as plain structs.
They describe an implementation of an abstract data type with physical types.

7.3.1 Declarations
7.3.2 Definitions

7.3.3 Views
Views are a way of sub-typing datatypes.

Views are simply specific interpretations or refinements of a datatype.

Chapter 8: Namespaces 25

8 Namespaces

To avoid name collisions, HAC supports namespaces. Namespaces are also useful for orga-
nizing closely related definitions and instantiations. HAC allows namespaces to be nested,
although one-level (flat) namespaces may be emulated by name-mangling.

The default namespace is the global namespace, the ultimate root of all user-defined
namespaces. The global namespace has no parent namespace.

See Appendix C.10 (Technicalities:Namespaces) of Stroustrup’s The C++ Programming
Language.

8.1 Identifiers

Identifiers may be prefixed with namespaces using the scope (::) operator, e.g.
‘zoo::aquatic::fish’. Any identifier that begins with :: is an absolute identifier, one
whose namespace path is specified from the global namespace. Identifiers fall into one of
several categories:

e unqualified, in which the parent namespace is implicit

e qualified-relative, where an identifier is prefixed with a partial namespace path (e.g.
‘dinner: :food: :salad’)

e qualified-absolute, where the full path to a given entity is specified in the identifier’s
prefix. (e.g. ‘::plane’ or ‘::farm::horse’)

8.2 Importing

To make all public definitions within a namespace available using unqualified identifiers,
one can import an entire namespace.

Aliasing is like psuedo subnamespace.

Each time a namepace is closed, all of its imported namespaces are discarded, which
means that the next time that namespace is opened, it loses its previous imports. This can
be useful for resetting imports, should the need or desire arise.

Since the global namespace cannot be closed, import directives in the global namespace
last until the end-of-file.

8.3 Resolution

In this section, we describe the order in which namespaces are searched to resolve identifiers.
Given an unqualified identifier, references are resolved as follows:

1. Lookup the identifier in the current namespace (where the reference is made). If a
match is found, it is guaranteed to be unique, otherwise, continue searching.

2. Lookup the identifier in each imported and aliased namespace. If a unique match is
found, return it. In the case of multiple matches (in different namespaces), report
ambiguity as an error. If no matches are found, continue searching.

3. If not already in the global namespace, continue searching using steps 1 and 2 in the
parent namespace. Return the first unique match found or an error if zero or more
than one match is found.

26 The HAC Language

8.4 Issues

Interpretation:

What does it mean for a parameter assignment or connection to appear in a namespace?
Doesn’t make any sense. Therefore forbid assignments and connections (actions) inside
namespaces. Namespaces may include instantiations and definitions and other namespaces.

Implementation:

Chapter 9: Templates 27

9 Templates

Your quote here.

— Bjarne Stroustrup

9.1 Terminology

Arity of a template signature is the number of parameters, or degrees of freedom. Non-
template definitions are said to have arity zero. Later we will also refer to the arity of
template specializations. We will use |A| to denote the arity of a template (including
specialization).

9.2 Forward declarations

Not yet supported. The idea is to declare only the template signature of an identifier,
without declaring its ports. Much like the following in C++:

template <template <int, class> class>
class my_template_class;

‘my_template_class’ is a class that takes a class that takes an integer and a class as a
template argument as a template argument.

9.2.1 Template signature equivalence

The formal parameters of a forward signature are allowed to have identifiers, which facili-
tates latter parameters depending on former parameters. Forward declarations are equiva-
lent if the prototype name matches (in the same namespace) and their template signatures
are equivalent. The following forward declarations are equivalent (in C++):

template <int> class foo;
template <int P> class foo;
template <int Q> class foo;

However, only the identifiers used in template class definitions may be referenced from
within the definition.

template <int R>
class foo {
/* R may be referenced as the first parameter */
s
Note that nowhere outside of the definition, can template parameters be referenced (just
as in C++). In \hac, one may declare an instance of a declared but undefined type, which
may not necessarily contain any named parameters.
foo<7> bar;
int N = bar.R; // ERROR: no public member named R
Here is an example of equivalent template signatures:
template <int N, int [N]> ...
template <int N, int A[N]> ...
template <int N, int B[N]> ...
template <int M, int A[M]> ...

28 The HAC Language

template <int M, int B[M]> ...

In all cases, the first parameter must be named because the second parmeter depends
on the first. Since nothing else depends on the second parameter, its name is optional.
Again, only the parameter names used in the definition may be referenced from within the
definition.

The same rules in this section (ripped off of C++) pertain to process, channel, and
datatype template definitions in HAC.

9.3 Default values

In C++, default values can only appear as a suffix formal parameter list. In HAC, we
allow default values in any position of the formal parameter list. However, each defaulting
argument position in a type reference must be given a placeholder (a blank space between
commas), even if it is at the end of the argument list.

9.4 Type-equivalence

NEW: In HAC, there are two subclasses of template parameters: strict parameters are
required to be equivalent for type-matching, whereas relazed parameters are ignored when
type matching. We refer to the strict type of an entity as the underlying template type with
fully-specified strict parameters, disregarding its relaxed parameters. The rationale for
making this distinction is that frequently, one wishes to declare sparse or dense collections
of the same logical type while allowing some internal variation. For example, ROM cells
hard-wired to 0 or 1 are permitted in the same collection, and would be templated
with one relaxed parameter for the cell’s value!. The user has the freedom to decide what
parameters considered relaxed.

The proposed syntax for distinguishing the two types of parameters is:
template-signature:
e template < strict-parameter-list >
e template < strict-parameter-list,, > < relaxed-parameter-list >
Both parameter lists are syntactically identical. When there are no relaxed parameters,

the second set of angle-brackets may be omitted. If there are only relaxed parameters, the
first set of angle-brackets are still required but empty.

There are two levels of type equivalence. Two entities are collection-equivalent or col-
lectible if their underlying template type is the same and their strict parameters are equiva-
lent, but not necessarily their relaxed parameters. Two entities are connection-equivalent or
connectible if they are collectible, their relaxed parameters are equivalent, and their public
interface (port-for-port) is connectible, i.e., the dimensions, sizes, and strict types of the
ports are themselves, connection-equivalent. (Note the recursive definition.) Connectibility
implies collectibility, but not vice versa.

TODO: denotational semantics
Definition: a type is complete is it is either a strict type, or a relaxed type with its relaxed
parameters bound. Connectible-equivalence is the same as equivalence between complete
types.
1

The motivation for this comes from the fact that in CAST, environment sources could not be arrayed
if they differed in values.

Chapter 9: Templates 29

DEBATE: (Resolved, see above: NEW) Should the fourth criterion be required for
type-equivalence, or can we allow non-equivalent template parameters as long as the ports
interface is equivalent?

Implementation requirement: type errors must be caught by the end of the create-phase
of compilation.

Definition requirement: For a template definition to be well-formed, all instances
(aliases) local to that definition, including ports, must have complete type. Note that
a given definition template may instantiate a definition for each set of unique template
parameters, some of which may be meet this requirement, others which may not. [Quick
examples of valid and invalid definition?]

Syntax and semantics: The basic syntax for explicitly binding instance alias type pa-
rameters is:

e instance-reference < relared-parameter-list >

The instance-reference may reference a collection of aliases (with ranged specification), in
which case the same relaxed parameters are bound to each referenced alias. (Technically,
member references could be rejected in this context because all ports are required to have
complete type by construction.)

Application: Arrays. The rationale for introducing relaxed types is to be able to de-
clare an array of elements whose members are not identical, though their interfaces remain
compatible. The following valid example shows how relax-typed arrays are declared:

template <pint X><pbool B>
defproc foo(...) { ... %

foo<2> bar[2];
bar [0]<true>; // bind relaxed parameter
bar[1]<false>; // bind different relaxed parameter

Had one of the parameter-binding statements been omitted, compilation would eventually
result in a error indicating that the unbound instance had incomplete type.

Syntactic sugar.
foo<1> bar<true>; is equivalent to foo<1> bar; bar<true>;.
foo<1> bar<true>(...); is equivalent to foo<1> bar; bar<true>; bar(...).
foo<1> bar<true>[N]; is equivalent to foo<1> bar[N]; bar[0..N-1]<true>;.

Aliasing and collection strictness. Consider the following declarations: foo<1><true>
bar; and foo<1> car<true>;. bar cannot be aliased to car because the collections (even
though they are scalar) have different strictness. Strictly speaking, their respective array
types are foo<1><true> and foo<1>, which are not equivalent. For a well-formed connection
between two aliases, the collections of the respective aliases must be equivalent, match in
strictness, and the relaxed types bound to each alias must be equivalent or compatible. In
other words, members of strictly typed collections (arrays) cannot alias members of relaxed
typed collections.

Implicit type binding though connections. When two aliases are connected to each other,
the connection is valid if, in addition to their parent collections’ types being equivalent, one
of the following holds: both aliases are bound to equivalent parameters or at least one

30 The HAC Language

alias has unbound parameters. When an alias is formed, the relaxed type parameters are
automatically ‘synchronized,” which effectively binds the type of aliases through other aliases
of bound type. [Examples from test suite needed.]

Implementation detail: As soon as an instance alias is bound to a type, it is instantiated.
All (reachable) aliases thereof are also instantiated and recursively connected. Attempts to
reference members of type-unbound aliases can be rejected as errors. (Theoretically, since
the public ports may not depend on relaxed parameters, such references may not be treated
as errors in the future. It is possible to instantiate the ports before the type is bound,
however, internal aliases cannot be replayed until the type is bound, either explicitly or im-
plicitly. The current policy is just a conservative approximation of the eventual operational
semantics.)

Type propagation through ports. Since definition members and ports are required to
have complete type, the relaxed parameters must be propagated from the formal definition
to each instantiating context. Consider the example:

defproc wrap(foo<i> x) {
x<false>;
}
wrap Z;
upon instantiating Z in the top-level, Z.x has type foo<1><false>.

Restrictions. Where are relaxed parameters forbidden? In port specifications, types
of ports and their array sizes may not depend on relaxed parameters, i.e. they may only
depend on strict template parameters. This guarantees that the port interfaces remain the
same among members of a relax-typed array. In typedef templates, the canonical type’s
strict template arguments may not depend on relaxed parameters. (Why not? Allowing
so would give a means of subverting template parameter strictness.) Anywhere else in the
body of a definition template, relaxed parameters may be used freely, within the constraints
of the fundamental typing rules.

When should relaxed template parameters be used? General guideline: when the port
interfaces do not depend on the said parameters.

9.4.1 Template Examples

The following example illustrates how one might describe a ROM array using relaxed tem-
plate arguments.

template <> <pbool VAL>
defproc ROMcell(...) { ... }

template <pint X, Y> <pbool V[X][Y]>
defproc ROMarray(...) {
ROMcell<> x[X][Y]; // <> is optional
// can’t reference x[i][j].member yet
// because instance types are incomplete
(i:X:
(§:Y: x[i1[3] <VIil[31> C...05)
)

// from here, may reference x[i][j].member

Chapter 9: Templates 31

ROMarray <2,3>
a <{{false,true,false},
{true,false,true}t}>;
This following example shows how one would declare an array of sources (like for a test
environment):
template <pint N>
defchan elof (...) {...}

template <pint N> <pint M; pint V[M]>
defproc source_elof (elof<N> c) {...}

elof<4> C[10];

source_elof<4> CS[10]; // instances’ types are incomplete
cs[o] <1, {2}> (C[0]); // can complete types and connect
CS[1] <3, {2,0,1}> (C[1]);

Ccs[2] <2, {1,0}> (C[2]);

We could have also declared the array of sources with sparse instantiation, as long as
the strict template arguments match:

source_elof<4> CS[0..0];

// this determines the entire collection’s strict parameters

// but sets the relaxed parameters for only the indexed range
csfol<1, {2}>(C[0]);

// This binds the relaxed template parameters and connects ports.
source_elof<4> CS[1..1];
Cs[1]<3, {2,0,1}>(C[1]);
source_elof<4> CS[2..2];
Cs[21<2, {1,0}>(C[2]);

[TODO: write section on connection examples]

9.5 Type Parameters

TODO: This section is in consideration for future extension.

Up to this point, the template parameters covered are valued parameters. We now
introduce type parameters.

Some examples:
e template <datatype D> defproc ...
e template <chan C> defproc ...
e template <proc P> defproc ...

9.6 Template Template Parameters
Punt, I mean it. (What do you think this is, C++7)

32 The HAC Language

9.7 Template Specialization
MAJOR PUNT.

Semantic contraint: The forward declaration of a general template must precede any
declaration of any specialization with the same family (same name).

Also partial specializations.

See Section 9.10 [Template Definition Bindings|, page 32, for the complicated issues
regarding template specialization.

RESOLVE: Should we impose any restrictions on whether or not template definitions
may be specialized, and if so, where?

For example: forcing all forward declarations of specializations for a particular defini-
tion family would solve the problem of specialization coherence, but would make such a
family of definitions unextendable for future specializations — not all specializations can
be declared up-front! Implementation consideration: For definition families consisting of
only specializations (genericless), this can introduce a lot of overhead in having to process
specializations irrelevant to a particular compilation unit.

Impose constraints on definitions, perhaps some invariant constraints and relations be-
tween generic and specialized definitions? (e.g. contains same named instances) But this
would unnecessarily restrict variations in implementation of certain definitions.

Forward declarations of specializations.

RESOLVE: Do ports of specialized definitions have to match that of the generic template
definition? Members certainly need not. What are the implications on argument type-
checking?

9.8 Partial Ordering of Specializations

Partial and full specializations for a given template definition may be defined on a partial
order. Specializations A and B are ordered A < B if and only if all template parameters
that satisfy A also satisfy B and |A| < |B|. (In English, ...) If |A| = |B|, and A # B, then
A and B are not comparable. Examples, please.

9.9 Template Argument Deduction

Not having to specify every (or any) template arguments.

9.10 Template Definition Bindings

Specialization introduces a whole new aspect of complication to the language. When a
definition is used to instantiate an object, should it be instantiated with the best-fit def-
inition seen? In C++, the notion of point-of-instantiation is used to select the definition.
[cite] Roughly, it says that only definitions that are available (complete) before the point in
the translation unit are considered for instantiation. This introduces potential headaches
when different translation units see different available definitions at different points of in-
stantiation, i.e. C++ has no mechanism for enforcing consistent use of specializations across
translation units. The benefit of compile-time binding of definitions is that type-checking
of template definitions and uses may be done entirely at compile-time per translation unit.

Chapter 9: Templates 33

HAC uses the unroll-phase as the point-of-instantiation for all instances, when all in-
stances are bound to their proper definitions. The consequence of such a choice is that
compile-time type checking is very limited with respect to template definitions. [Discuss
implementation issues.]

RESOLVE: Should the following example be accepted or rejected (as a compilation unit)?

template <pbool B>
defproc foo() { }

foo<true> bar;
bool b = bar.x;

What if another compilation unit provides a specialization for foo<true> with a bool
member x?

Likewise, consider the following similar example:

template <pbool B>
defproc foo(bool b) { }

foo<true> bar;
bool b = bar.x;

It is conceivable for a specialization to be defined later without b as a bool port. Should
the last connection statement be accepted at compile-time? If so, does that constrain the
specializations that may be introduced later?

PROPOSAL: A separate bind-phase to allow full type-checking of a compilation unit
(perhaps with references to available definition families).

IDEA: Allow introduction of new template specializations that do not interfere with
pre-determined bindings. Rationale: many full-specializations are introduced for one-time
use and do not interfere with other instantiations’ bindings.

Binding an instantiation to a definition is recursive: i.e. all members and sub-instances
of a bound instantiation must already be bound. Implementation issue: bind-if-possible to
automatically bind dependent instantiations.

Implementation option: eager or early binding to force definition binding and thus allow
type-checking of a compilation unit that uses template definitions.

IMPLEMENTATION: Is there a need to track the instantiation statements that wused
particular specializations? Need to somehow catch inconsistent views of specializations...

BOTTOM LINE: Type-references to template definitions MUST have a consistent view
of definitions at instantiation (unroll) time.

9.11 Issues

As useful as templates may seem, they can’t be thrown together without expecting some
complications in the language. We use this section to slap down issues that may arise. Once
these issues are resolved, the text for their resolutions belong to some sort of “rationale”
document, possibly in footnotes or appendices in this language specification.

34 The HAC Language

9.11.1 Relaxed Parameters

In a sequential scope, an instance of relaxed type may have its relaxed actuals bound at
any time (but once only). This means that at the time of unbound instantiation (during
unroll), the relaxed parameters will not be available for use with unrolling. However, at
the point of instantiation, the public ports of the instance (which should never depend
on relaxed parameters) should be made available for connections. Q: how do we unroll
ports in this situation? Q: do we need to worry about internal aliases differing between
difference different complete types? Perhaps not because internal aliases should be replayed
at create-time before finalizing footprints.

9.11.2 Template Parameter References
PUNTED. (This is groundwork for template metaprogramming.)
Given a templated definition, such as
template <pint N> defproc foo(...) { ... }

should the parameter foo::N be accessible to the programmer as an rvalue? If not,
then should we allow references to internal member values (that may be copies of actual
parameters)?

template <pint N> defproc foo(...) { pint _N = N; }
pint M = foo<3>::_N;

Should all internal meta-values be publicly accessible as rvalues? Allowing access to such
variables is the root of the template metaprogramming paradigm in C++.

Forbidding direct references to the template parameters may inconvenience a program-
mer by having to explicitly copy-propagate all parameters that she wishes to export. It also
avoids any issues that arise with forward declarations and typedefs templates.

Consider the template signature equivalence examples from Section 9.4 [Template Type
Equivalence], page 28. Among a set of equivalent forward declarations, which set would be
used for lookup? The first? or last? The best answer might be ‘none’: parameters may
only be referenced if the complete definition is available.

(Looking forward to the chapter on typedefs...) Now consider the following typedef
declaration, continuing from our previous example:

template <pint N> typedef foo<N+1> goo;
pint P = goo<3>::N;

goo has its own parameter N that ‘shadows’ the base definition’s parameter of the same
name. (Whatif goo’s parameter was renamed to not collide? Then goo<3>::N would
clearly have to refer to foo’s N.) Either way this is disambiguated, the meaning would not
necessarily be intuitive. We should simply forbid direct references to template parameters.

Proposal: T am in favor of (what I just said above)

9.11.3 Template Specializations
Should we allow specializations (in the C++ sense)?

Introduces a whole set of issues with binding of dependent names vs. non-dependent
names.

Chapter 9: Templates

9.12 Future

Compile-time checking of templates, directives.

35

Chapter 10: Connections 37

10 Connections

Connections are a relation between instance references. (Connections are established in the
meta-language processing of compilation; they are determined at compile-time only.)

10.1 Instance References

Instance references refer to specific entities at unroll-time. Instance references fall into
two categories: implicit and explicit. See Chapter 4 [Arrays|, page 13. Implicit references
infer sizes of the entire array or partial array, whereas explicit references fully specify the
dimensions.

Under most circumstances, only hierarchical instance references through public port
members is permitted. The exception to this rule is in a subset of SPEC directives. See
Chapter 16 [SPEC Directives], page 59.

10.2 Aliases

Connections between instance references create aliases. Before making any connections, all
instances in the same scope constitute a hierarchy of referenceable objects. As connections
(aliases) are made, these object unify, i.e., after ‘a = b’, both ‘a’ and ‘b’ refer to the same
object. Aliasing hierarchical references also unifies them into the same object, e.g. ‘a.x =
b.y’ result in one object, until further aliased. (The number of unique objects shrinks as
connections are made.) Aliasing is sticky; once a connection has been made, there is no
way to disconnect or undo the connection.

Publicly accessible references (allowing hierarchical access to public ports of structures)
in any given scope are represented by the set of all legal names. The size of the names
set doesn’t change with connections, only the number of unique objects that are eventually
created.

If the types are user-defined, then aliasing is recursive. For example, if the type of ‘a’ and
‘b’ has members (either public or private) ‘x’ and ‘y’ internally aliased, the ‘a.x’, ‘a.y’, ‘b.x’,
and ‘b,y’ are all valid references to the same instance of ‘x’ and ‘y”’s type. (Implementation:
This can simply be accomplished by mapping ‘a’ and ‘b’ to the same instance, saving the
trouble of recursive aliasing, and generating the combinations of names, not that that is
ever a problem.)

Since connections and aliases are unrolled, the actual unique instance objects are not
created until all connections have been processed.

Compiler options (proposed to support):
e ‘-Wprocess-alias’: warning for connections between process (since the semantics seem
arbitrary at this point and are prone to future change),

e ‘-Wchannel-connections’ warning for suspicious wrong connections with channels
(multiple senders or multiple receivers)

10.3 Port Connections

Another way of specifying connections is with port connections. A process instance ‘p’,
whose type contains N ports can be connected: ‘p(...)" with N comma-separated optional
references.

38 The HAC Language

p(x, ¥, » 2,);

is equivalent to writing:
p.portl = x;

p.port2 = y;

p.port4d = z;

A port connection must be written with the exact number of slots as ports in the process
definition, where references may be omitted.

10.4 Implicit Ports

Processes contain a set of hidden implicit ports for the power supply nodes. Every process
definition effectively declares these supply nodes as the first two ports, 'Vdd and !GND,
the primary supplies. (The top-level module definition is treated as a process for this
purpose, and thus also contains these nodes.) These ports have slightly different connection
semantics than ordinary referenceable objects. First, these ports are specially named so that
they cannot be accidentally referenced directly; ‘foo. !Vdd’ is syntactically illegal. Second,
these ports do not belong into the same set of explicit ports that the user defines; they are
not counted in the number of standard ports, for the purpose of writing port connections.

Left unspecified, the default semantics is to automatically connect these supply ports
to the respective supply ports belonging to the parent process. Production rules, alike,
also connect to these supply ports by default. See Section 15.4.3 [PRS Supply Overrides],
page 58. This behavior is intended for subcircuits that fall under a single supply domain.

To override the supply ports, one writes:
o supply-override : proc-inst-ref $(GND-node , Vdd-node) ;
e supply-override : proc-inst-ref $(GND-node) ;
e supply-override : proc-inst-ref $(, Vdd-node) ;
This effectively connects ‘proc.!Vdd’ to Vdd-node, and ‘proc.!GND’ to GND-node. Unlike

normal aliases, these connections can be replaced; subsequent supply override statements
will break former connections to form new ones.

proc $(myVddl);
proc $(myVdd2) ;

results in only ‘proc.!Vdd = myVdd2’, while ‘myVdd1’ remains disconnected from both.

Normal port connections may follow supply overrides, for example, ‘proc_inst $(myVdd,
myGND) (x, y, 2);’.

Chapter 11: Attributes 39

11 Attributes

Instance attributes are a way of communicating to other tools that something is special
about a particular instance. The language provides some attributes for the standard meta-

types.

11.1 Bool Attributes

Thus far all attributes on bools (nodes) are boolean valued. The default un-attributed
node assumes default values for all known attributes. Boolean attributes are contagious in
that once they are set to non-default values, they cannot be unset. Non-default values also
propagate bottom-up through ports in the instance hierarchy. (They cannot propagate top-
down, for that would violate modularity.) Furthermore, when connecting nodes, the non-
default value always dominates (spreads contagiously). Keep this in mind when deciding
at which level of hierarchy to attach attributes.

supply ¢ [Macro]
Declares that the said node is a supply node. Supply nodes are treated specially in
different back-end tools. t=0 indicates that supply is GND-like (low). t=1 indicates
that supply is Vdd-like (high).

reset init [Macro]
Declares that the said node is a reset node with initial value init. Reset nodes are
treated specially in different back-end tools. init=0 indicates that supply is active-low.
init=1 indicates that supply is active-high.

iscomb b [Macro]
Nodes are initially iscomb=false. If b is true, node is marked as being driven com-
binationally, regardless of the actual fanin rule of the node. This can be used to tell
other tools to not expect a staticizer on this node. If attribute value is unspecified,
default value is true.

autokeeper b [Macro]
Nodes are initially iscomb=true. If b is false, direct other back-end tools to not
automatically staticize this node for simulation or netlist generation purposes. If
unspecified, default value is true.

isrvcl b [Macro]
isrvc2 b [Macro]
isrve3 b [Macro]

Nodes are initially isrvci=false, isrvc2=false, isrvc3=false. If b is true, label
this node in a way meaningful for redundant keeper circuits. If unspecified, argument
is implicitly true. Exclusivity between these attributes is not yet checked.

Diagnostic attributes.

ignore_interfere b [Macro]
Diagnostic attribute. If b is true, then suppress diagnostics about interference (op-
posing on-pulls) on this node. In simulation, the behavior should remain, just silence
warnings. When b is omitted, it is assumed to be true.

40 The HAC Language

ignore_weak_interfere b [Macro]
Diagnostic attribute. If b is true, then suppress diagnostics about weak-interference
(on-pull vs. X-pull or X-pull vs. X-pull) on this node. In simulation, the behavior
should remain, just silence warnings. When b is omitted, it is assumed to be true.

11.2 Channel Attributes
TODO: add some attributes

11.3 Process Attributes
TODO: add some attributes

Chapter 12: Typedefs 41

12 Typedefs

When and where are typedefs useful? Where may typedefs appear? Can be in namespace,
or local to a definition.

Two kinds of typedefs, with three syntaces.
typedef-declaration:
1. typedef existing-definition-id identifier;
2. typedef existing-definition-id < template argument list > identifier;
3. template-signature typedef existing-definition-id < template-argument-list > identifier;

In all three forms, the identifier is the name of the new typedef. The only prerequisite
for the existing definition is that it has already been declared.

The first form is a pseudo-typedef, a pure definition name alias, as if one had written
#define identifier existing-definition-id in C-preprocessing, with the existing defininition
being a simple identifier. (existing-definition-id may be a relative or absolute hierarchical
name.) The potential confusion with the first typedef is that ezxisting-definition-id identifier
may be mistaken for a templated type with all parameter arguments with defaults (the only
condition in which template arguments may be omitted from a templated definition).

The second form of typedef substitutes a fully-specified template type (one with all
template parameters supplied) with an identifier. This is convenient for reusing a templated
type repeatedly without having to copy the arguments.

The third form of typedef is a template typedef (not yet supported in C++) which wraps
a partially-specified template type with a new definition, usually (not always) with fewer
arguments. This is particularly useful for binding template arguments to make simple
template types. If a definition doesn’t already have default arguments, this is one way of
supplying additional default values for an existing templated definition.

Typedefs can be defined in terms of other typedefs. There is currently no restriction on
the number of indirections of typedef-ing.

By construction, the graph of typedef definitions must form a tree, and thus, cannot
have cycles. Ultimately, every typedef must be defined in terms of a unique non-typedef
canonical definition. The canonical parameters are the values of the parameters that are
eventually passed to the canonical definition, and are evaluated by the transformations
defined by each typedef indirection.

Templates typedefs: should they be specializable? Methinks not: that would make
things incredibly confusing.

12.1 Type-equivalence

TODO: This section needs to be revised since the introduction of strict and relaxed template
parameters! (Should basically forbid relaxed template parameters in typedef templates.)
Old text follows:

We extend the notion of type-equivalence to include typedefs as follows:

Two instances of typedefs are type-equivalent if and only if they refer to the same
canonical definition, and their canonical parameters are equal.

Some implementation hints. Given two typedef instances or references. Find greatest
common ancestor. Common ancestor may simplify equivalence deduction.

42 The HAC Language

12.2 Questions

Forward declarations. Can typedefs have forward declarations? Should we allow this?
Rather not. “I'm declaring this typedef’s name, but it’s definition will be bound later...”
Beware of typedef cycles!

Can typedefs have external linkage? Can cycles form? But what class of type is it:
channel, process? e.g. extern typedef foo;

extern template <...> typedef foo;
extern typedef old new;
Linkage. See Chapter 13 [Linkage], page 43.

Q: Should typedefs ever be templatable with relaxed arguments? A: Maybe only if we
guarantee that strict arguments don’t ever depend on (escape to) relaxed parameters.

Chapter 13: Linkage 43

13 Linkage

This is completely unimplemented...

One of the strengths of the HAC language is modularity. The old implementation of
the CAST language was a single-pass interpreter. The current implementation of an HAC
compiler allows one to compile modules independently and later link modules together
into a coherent object file. Modular compilation leads to efficient recompilation, library
development...

13.1 Visibility

Definitions and instantiations within a compilation module can either be publicly accessible
to other modules, or private and inaccessible. By default, all entities are public, i.e. their
uses are exported. To make an entity private, simply prefix the first declaration or prototype
with the keyword static, like in C. To refer to an entity defined in another module, simply
prefix a declaration with the keyword extern, like in C.

Implementation: Generate automatic headers from implementation files.

13.2 Ordering

13.3 Questions

How does linkage apply to typedefs? Can one make a definition static, but a typedef thereof
exported? (Could be useful for simplifying interfaces to definitions...)

Chapter 14: Communicating Hardware Processes 45

14 Communicating Hardware Processes

This chapter describes the CHP sub-language, which is based on Hoare’s CSP ref:csp. CHP
operates in the non-meta language domain of HAC, meaning that the instances and values
referenced may be resolved at compile-time, even after instantiation. In fact, most values
and references are only resolved at run-time.

14.1 Expressions

This section describes the kinds of expressions that CHP supports.

14.1.1 Value References

CHP describes the computation and communication of data variables over channels. Since
CHP describes the run-time behavior of programs, the values referenced are only resolved
at run-time, just like in a traditional C program. The data-types referenced may bool, int,
enums, or user-defined (structs) (Chapter 7 [Datatypes|, page 23).

The indices used to address values may themselves be run-time variables. For example,
in x[i], i may be an int received over a channel. Operationally, this means we need
run-time array bounds checks on indices, and existence checks in the case of sparse arrays.

In CHP, pint s are considered int<32> values and pbools are considered bool values
as far as type-checking is concerned. (Proposal: support for wildcard (automatic) widths
when interpreting pint as int.)

Note: the current implementation does not yet support ranged references (x[i..j]).
We don’t expect this to be difficult, but implementation will be deferred until this feature
is warranted.

UPDATE: nonmeta languages, including CHP, no longer support aggregate instance or
value references. This means meta-valued ranges cannot appear in any nonmeta language.
Nor can implicit non-scalar collection references appear in nonmeta language. Simply put,
all references in nonmeta languages must be scalar (0-dimensional).

Arbitrarily complex indexed and member references are supported in the nonmeta lan-
guages, such as CHP. However, it is up to the downstream toolchain to interpret or impose
further restrictions on the references. For example, a reference such as x[pil [j].y[k],
where pi is a meta-valued index and j and k are nonmeta valued integers could lead to a
very difficult synthesis or analysis.

14.1.2 Operators

Standard binary arithmetic operations. Tentative type restriction: operands must be of
equal int width. Return type is the same as operands.

Old CAST-style syntax for boolean logic operations.
Proposal: use C-style syntax so we may distinguish bitwise from logical operations.

Proposal: operator overloading to define arithmetic on user-defined types. (Then we
could call this a Hierarchical Operator-Overloading Object-Oriented Circuit Description
Language, or HOOOORCD.) Low priority.

46 The HAC Language

14.1.3 Bit Slices

TODO: add support for bit slices. Add public bit-array ports to the intrinsic int definition.
Add a built-in (private) type for bits.

14.2 Channels

Chapter 6 [Channels], page 19 presented the notion of channels in the context of general
nonmeta languages.

We (provisionally) stated that the fundamental channel types, such as chan(bool), were
abstract in that they describe what information was communicated over a channel, but not
how (encoding and protocol).

As far as the CHP level is concerned, the implementation is irrelevant (7) to the con-
current program semantics and functional behavior (and simulation).

Where does the implementation come into play? In automatic production-rule generation
and mixed-level simuation involving production rule details.

14.3 Statements

This section describes the various statements that CHP supports.

14.3.1 Communications
To receive data over a channel, one simply writes:

o (CHP-receive : channel-reference 7 (data-reference-list)

For example, X7 (x, w) means: receive values x and w over the two fields of channel X.
To send data over a channel, one writes:

e (CHP-send : channel-reference ! (nonmeta-expr-list)

For example, Y! (y, z) means: send values y and z over the two fields of channel Y.

The channels referenced in sends and receives may be either fundamental channel types or
user-defined channel types. However, the channel reference must be scalar (0-dimensional).
The variables in the reference list or expression list must type-check against the fields of
the underlying fundamental channel type. See Section 6.2 [Fundamental Channel Types],
page 21, regarding fundamental channel types. If any types are template-parameter depen-
dent, then type-checking is deferred until the template types have been instantiated.

Operational semantics: Sends and receives in CHP have blocking semantics, i.e., a com-
munication does not complete until its complement (the other side) is also reached. After
both sides of the communication have ‘synchronized,’” can the communication proceed.

Execution clarification: Suppose we have the statement X[i]! (y[j]1), where i and j are
nonmeta (run-time) variables. If we reach this program point, and find that X[i] is blocked
(not ready to send), then we must suspend further execution until one of the following
conditions changes:

e X[k] receive executes for some value k

e i changes the reference to a different channel

Chapter 14: Communicating Hardware Processes 47

If we were to be precise, and track dependencies dynamically (rather than conservatively
and statically), we could narrow the first conditional to only X[i] receiving. Only at the
time of execution, do we evaluate the value of y[j] for sending. The value and reference of
y[j] is permitted to change between the time it is blocked and the time the communication
is executed! (Can we trap or alert when this is not intended?)

TODO: Probes (implemented, but not documented yet)

14.3.2 Assignments
The syntax for a variable assignment is simple:
e (CHP-assignment : lvalue := rvalue
For example, x := y assigns the value of y to x. The lvalue must refer to a scalar instance

of a data type, while the rvalue may be any (nonmeta) expression. The types for lvalue
and rvalue must match.

Execution: just assign the current value of the rvalue to the lvalue. Assignments are
atomic, so we need not consider changing references.

14.3.3 Wait

When a wait statement is reached, the program simply waits for a condition to become true
before proceeding.

o CHP-wait : [CHP-expr]

The expression must, of course, be boolean in value.

Execution: When arriving at a wait event, evaluate the guard expresions. If true, then
proceed immediately to the event that follows. Otherwise, block this event pending any
change on variables or channels that could possibly change the value of the expression. In
implementation, the set may be precise or conservative, but the resulting evaluation must
remain equivalent.

14.3.4 Composition
CHP statements may be composed either sequentially or concurrently.
e (CHP-sequence : CHP-stmt ; CHP-stmt ...
e (CHP-concurrence : CHP-stmt , CHP-stmt ...
Concurrent composition has higher precedence than sequential composition, so X,Y; Z
is interpreted as (X,Y); Z. However, one may explictly parenthesize X, (Y; Z).

Execution of concurrent branches behaves like a fork and join (barrier). Upon initial
execution, each branch is begun concurently, but the execution is not completely until all
branches have reached the join-barrier. (This can be easily implemented as a decrementing
barrier counter.)

14.3.5 Skip

Skipping this section... haha.

Note on syntax: A skip statement may only appear by itself in a CHP body, i.e. never
in a sequential or concurrent composition. It may appear in-place of any CHP-stmt-list.

48 The HAC Language

14.4 Flow Control

This section describes the various flow control statements available in CHP.

14.4.1 Loops

Loops never end. Most hardware one will describe with CHP will contain a loop. (What
good is a program that only works once?)

e CHP-loop : x[CHP-stmt-list]

Execution: after the last action in the loop executes, schedule the first action for execu-
tion.

14.4.2 Guarded Commands
e (CHP-guarded-command : CHP-expr => CHP-stmt-list
A special case of a guarded commands is an else-clause, which replaces the guard expres-

sion with the keyword else. An else clause may only appear at the end of deterministic
selections, but not any other selection statements.

Execution: Interpretation depends on the context in which the guarded command ap-
pears, e.g. deterministic vs. nondeterministic selection, or do-while loops.

14.4.3 Deterministic Selection
o (CHP-det-selection : [CHP-det-guarded-command-list]
o (CHP-det-guarded-command-list : CHP-guarded-command [] ...

The guarded command list must contain at least two guarded commands (else it’s not a
selection). The last guarded statement may be an else clause.

Operational Semantics: (Basically exclusive switch-case.) Only one of the guards is
allowed to be true at a time (mutual exclusion). If more than one guard is ever true, then
there is an error in the program. A deterministic selection blocks until one of its guards has
become true and its guarded commands executed.

Execution: Since branches are executed mutually exclusively, as soon as any branch
finishes executing its last event, the events that immediately follow the selection may be
processes as if in the same sequence. If at any time more than one guard evaluates true, a
diagnostic is required, though signaling and error is recommended.

If initially none of the guards evaluate true, then the selection is blocked until one of
them becomes true. (This can be accomplished by registering all dependent variables on
a global watch-list. When any variable on the watch-list changes status, then subscribed
expressions are re-evaluated, to see if new events may be scheduled.)

If the guards include an else-clause, then this selection never blocks, because the else-
clause will guarantee that one clause will execute.

14.4.4 Nondeterministic Selection
e (CHP-nondet-selection : [CHP-nondet-guarded-command-list]
o (CHP-nondet-guarded-command-list : CHP-guarded-command : ...

Chapter 14: Communicating Hardware Processes 49

Note: for the sake of a cleaner grammar, we use : instead of | to denote a nondetermin-
istic selection. Can nondeterministic selections contain else-clauses?

Operational Semantics: nondeterministic selection blocks until at least one guard be-
comes true. While any number of guards may be true, one of the true guards is chosen
arbitrarily! as the path of execution.

Execution: More than one guard is allowed to be true, but only branch is chosen to be
executed. Q: Do we use the notion of a time-window before evaluating guards?

14.4.5 Do-While
o (CHP-det-selection : *[CHP-det-guarded-command-list]

No else clauses allowed.
Operational Semantics: Loop until all guards are false.

Execution: Never blocks because there is an implicit else-clause that skips/exits the
loop.
14.5 Metaparameter loop constructs

New syntaces for compile-time expanded repetitive constructs:

Sequential composition

{; i:N: ... }
Concurrent composition

{, i:N: ... }
Determinstic selection

[00 i:N: ...]
Nondeterminstic selection

[: i:N: ...]

14.6 Extensions

14.6.1 Function Calls

Calling C/C++ functions.
This is better documented in the CHPSIM Manual.

! Weakly fair.

Chapter 15: Production Rule Set (PRS) 51

15 Production Rule Set (PRS)

This chapter describes the Production Rule Set (PRS) sub-language. PRS operates strictly
in the meta-language domain of HAC, meaning that all involved instance references and
connections are resolved at compile-time, upon instantiation of each complete definition.
Production rules, like connections, may be programmed to depend on meta-language pa-
rameters.

15.1 Basics

Basic production rules are written as follows:

e rule : PRS-expr => node dir

(Reference to lines of grammar...) (Denotational semantics, type-inference later...)

The dir is either + (pull-up) or - (pull-down). A literal is an occurence of a (bool) node
on the left-hand-side of a production rule. A PRS literal and the right-hand-side node must
be a refer to a single (scalar) bool instance. A PRS-expr may be any boolean expression
using the operators ~, &, |, and literals. (The unary ~ operator has the highest precedence,
and the & operator has higher precedence than the | operator.)

The rule arrow -> can be substituted with one of its shorthand forms. The => arrow
automatically generates the complementary rule (pulling on opposite direction) using the
DeMorgan inverse of the guard. The #> arrow mirrors the rule pulling in the opposite
direction with the same topology but inverted literals, mostly useful for writing C-elements.
For example:

x&y &z => w-

xX&y &z #> c-
expands to

xX&y &z -> w-

x| Ty | Tz -> wt

x&ky &z -> c-

x & Ty & "z -> c+
Rules involving internal nodes may only use the plain -> notation Section 15.1.2 [PRS
Internal Nodes], page 52.

Since production rules are an abstract description of logic, the rules themselves need not
be CMOS-implementable. Enforcement of CMOS-implementability can be introduced by
later tools or compiler phases where desired. (TODO: write a CMOS checking pass.)

15.1.1 Sizing

We provide a way of specifying transistor widths for every literal. Each literal on the LHS
may be followed by an optional size argument:

o literal : node-reference { < float > },,

Ideas: Specify a width/strength on the RHS and automatically infer the sizes of the
literals on the LHS (only for this rule).

Actually, literal parameters may be any generalized list of expressions.

52 The HAC Language

15.1.2 Internal Nodes

A literal may be optionally prefixed with ‘@ to indicate that it is only an internal node,
and is not declared as a normal bool. Internal nodes are useful for specifying more general
circuit topologies that share common foot transistors. Internal nodes may appear on the
left-hand-side of production rules arbitrarily many times.

en -> @_en_int- // defines an internal node
“@_en_int & Ld -> _rd- // uses internal node as foot transistor
“@_en_int & Hd -> _md-

Above, _en_int is not declared as a bool, but the first rule that drives it effectively
declares it — an implicit declaration. An internal node may only be referenced as the
leftmost literal of any conjunctive (and) term. (TODO: position is not yet checked, currently
performs straightforward expression substitution.)

The effective production rules are obtained by substituting the internal nodes’ associated
expressions wherever they are used. With the above example, the effective production rules
are:

en & Ld -> _rd-
en & Hd -> _md-

Internal nodes are implicitly declared in the scope of the enclosing definition (or top-level)
so their names cannot conflict with existing declarations. Likewise, subsequent declarations
cannot re-use names of existing internal nodes.

Internal nodes can also be used in arrays, where the dimensions are implied by the
indexing. (Warning: node arrays are not supported in ACT.) One can declare arrays of
internal nodes in loops, for example:

(:i:N:
en & x[i] -> @_en_i[i]-
“@_en_i[i] & y[i] -> _z[i]l-
)
Each unique internal node may only be defined once in one direction, pull-up or pull-
down. Using an internal node in the wrong sense constitutes an error, e.g.:
x —> Qy-
Cy & z -> w-
is an error because @y is defined as a pull-down only expression, but is being evaluated

active-high in the rule for w-. Negations of internal nodes are bound to the referenced node
and dictate the sense in which the node is pulled, unlike regular boolean expressions.

The following is an erroroneous attempt to define the same internal node in two direc-
tions:

x —-> Qy-
“x > Qy+

Rules involving internal nodes may only use the plain —> notation.

Since internal nodes just define re-usable subexpressions, production rule attributes are
not applicable to them; they are simply ignored.

Status: implemented and tested.

Chapter 15: Production Rule Set (PRS) 53

15.2 Attributes

We need a clean way to tag nodes and rules with attributes for various tools.

15.2.1 Node attributes

What happens when we connect nodes with conflicting attributes?

Attributes from super-cells or sub-cells?

15.2.2 Rule attributes

We propose the following syntax for per-rule attributes:
o rule-attrib-list : [rule-attrib ; ...]

o rule-attrib : identifier = expr-list

Rule-attribs are generalized as key-value(s) pairs, which permits the programmer to add
arbitrary attributes to the language without adding more keywords to the language. Rule-
attrib-lists are just semicolon-delimited lists of one or more rule-attributes. In the case of
repeated attributes, the latter pair will override the former. Rule-attribute-lists are optional
prefixes to PRS-rules.

For now, the purpose of these attributes is to emit attribute lines suitable for consump-
tion by another text-based tool, such as old versions of prsim.

Q: What happens when we OR-combine rules with different attributes?

Some existing attributes:

after d [Macro]
Applies a fixed delay d to a single rule. Affects hflat output and hacprsim operation.

after_min d [Macro]

after_max d [Macro]
Specifies upper and lower bounds on delays for a rule. The upper bound should be
greater than or equal to the lower bound, however, this is not checked here.

weak b [Macro]
If b is true (1), rule is considered weak, e.g. feedback, and may be overpowered by
non-weak rules. If unspecified, default value is true.

W width [Macro]
Specify the default transistor width for this rule. For uniformly sized stacks, writing
this makes the rule much less cluttered than repeating sizes per literal. Widths can
always be overridden per literal.

L length [Macro]
Specify the default transistor length for this rule. Lengths can always be overridden
per literal.

unstab b [Macro]
If b is true (1), rule is allowed to be unstable, as an exception. If unspecified, default
value is true.

54 The HAC Language

comb b [Macro]
If b is true (1), use combinational feedback.

iskeeper [b] [Macro]
If b is true (1), flag that this rule is part of a standard keeper. If unspecified, default
value is true.

isckeeper [b] [Macro]
If b is true (1), flag that this rule is part of a combinational feedback keeper. If
unspecified, default value is true.

diode [b] [Macro]
If b is true (1), flag that this rule generates a diode-connected transistor. If unspeci-
fied, default value is true.

res [b] [Macro]
If b is true (1), flag that this rule is a fake resistor. If unspecified, default value is
true.

keeper b [Macro]

For LVS, If b is true (1), staticize (explicitly). This attribute will soon be deprecated
in favor of a node attribute autokeeper.

hvt [Macro]
lvt [Macro]
svt [Macro]

If ‘hvt’ is set, then emit all devices with in this particular rule with hvt (high voltage
threshold), unless explicitly overridden in a node literal. If ‘1vt’ is set, then emit all
devices with in this particular rule with lvt (low voltage threshold), unless overrid-
den. ‘svt’ restores back to standard Vt as the default. When no parameter value is
given, implicit value is 1. When multiple settings are given, the last one should take
precedence. Default: svt

output b [Macro]
If b is true (1), staticize (explicitly). Q: should this really be a rule-attribute? better
off as node-attribute?

loadcap C [Macro]
Use C as load capacitance instead of inferring from configuration.

always_random b [Macro]
If b is true (1), rule delay is based on random exponential distribution. If unspecified,
default value is true.

N_reff R [Macro]

P_reff R [Macro]
Use R as effective resistance to override the automatically computed value in other
back-end tools. NOTE: This is a hack that should be replaced with a proper imple-
mentation of the "fold" expression macro. Consider this attribute deprecated from
the start.

Chapter 15: Production Rule Set (PRS) 55

15.2.3 Literal attributes

The literals of the rule expressions may have attributes. Literal attribute are mostly for
back-end tool-specific use. Literal attributes are written like other attributes ‘key’ or
‘key=value’.

e l[iteral : bool-ref

e literal : bool-ref < W >
literal : bool-ref < W , L >

e l[iteral : bool-ref < W , L ; literal-attrib ; ... >
o literal : bool-ref < W ; literal-attrib ; ... >
e literal : bool-ref < ; literal-atirib ; ... >

The width W and length L and literal attributes are all optional.

label (string) [Macro]
Labels the transistor represented by a PRS literal with a user-supplied name. This
is mostly useful during netlist generation. A shorthand notation for labels is just to
pass the "string" value without writing ‘label="string"’.

prs {
x & y<;"this_one"> & z<;label="this_works_too"> -> _o-
}
lvt [Macro]
Specifies that a transistor has low-Vt type, mainly for netlist generation and LVS
checking.
svt [Macro]

Specifies that a transistor has standard-Vt type, mainly for netlist generation and
LVS checking. This is also the default type, when Vt is left unspecified.

hvt [Macro]
Specifies that a transistor has high-Vt type, mainly for netlist generation and LVS
checking.
Ideas:

Instance-specific attributes?
Applications:
e Procedural layout

e Automatic sizing

15.2.4 Operator attributes

The & operator may take an optional suffix attribute to indicate that an internal node is
precharged. For example:

en &{+“en} Ld & Ci -> _rd-
states that the internal node between gates en and Ld is precharged with a PFET gated
with “en.

Status: parsed, but ignored. Should this be done with | as well?

56 The HAC Language

15.3 Loops

Loop syntax, unrolling, etc...
Loops can appear in expressions and in rules in the PRS language. A rule-loop can be
written as:
e (: loop-var : range : rules)
The loop-var is declared with a identifier, and may be referenced in the body rules. The
rule-loop is repeatedly expanded using the values spanned by the range. (The range may
be written implicitly or explicitly.) If the range evaluates empty, then the body is skipped

during unrolling. Rule-loops may be nested, i.e., they may contain other loops. The current
limit for the size of an expression is 65535 sub-expressions.

An expression-loop is written as:
e (op : loop-var : range : PRS-expr)
The loop-var and range have the same meanings as when used in rule-loops. op may be
& or |. The body expression is repeatedly expanded with the op operator. Expression-loops

may be nested, i.e., they may contain other expression-loops. If the range evaluates empty,
... We need to specify these semantics!

Interpret the following:
o (&:i:0: x[i]) —> y-
o (]:1:0: x[1]) —>y-

e z & (&:1:0: x[i]) -> y-
e z& (:1:0: x[i]) —> y-
e z | (&:1:0: x[i]) > y-
e z | (:1:0: x[i]) > y-

15.4 Extensions

This section describes some of the recent extensions to the PRS language.

15.4.1 Macros

As an alternative to a PRS-rule, one may write a macro to represent some custom topology
of a netlist or as shorthand for an expansion.

We propose the following syntax for macros:
e PRS-macro : identifier < expr-list > (PRS-literal-list)
e PRS-macro : identifier (PRS-literal-list)

We do not hard-code any built-in macros into the language with keywords, rather we
allow the programmer to define the meaning of each macro. Macros can also take parameters
inside angle-brackets, where the expr-list is a list of comma-separated expressions. The
number of arguments for a macro may also be variable, and is defined by the macro’s
implementation. The macro mechanism can potentially be used to attach attributes to
nodes and other subnets. As the list of macros grows, they should be documented here.

Examples of macros one may wish to define:

Chapter 15: Production Rule Set (PRS) 57

e passn — <W,L>(g,s,d) W is an optional transistor width, L is an optional length.
If only one parameter is passed, it is interpreted as the width. g, s,d are the gate,
source, and drain, respectively. The pseudo production rule generated (cflat prsim)
is uni-directional, i.e. the drain is driven as the output.

e passp — analogous to passn

e pass — full symmetric pass-gate
® assert

e stat

comb-fb

The remaining sections discuss other extensions that have been proposed at other times.
See which ones could be folded into a general macro!

Below are a list of macros documented in the source file ‘Object/lang/PRS_macro_registry.cc’ i

passn WLgsd [Macro]
Usage: ‘passn<W,L>(g, s, d)’ or ‘passn(g, s, d)’
Declares an NFET pass-transistor with gate g, source s, and drain d. Sizing parame-
ters W and L are optional. In hflat prsim mode, this prints a uni-directional (sized)
production rule

after 0 g & "s -> d-

In hflat 1vs mode, this just prints ‘passn(g, s, d)’ back out. Sizes are printed only
if ‘-fsizes’ is passed to hflat.

passp WLgsd [Macro]
Usage: ‘passp<W,L>(g, s, d)’ or ‘passp(g, s, d)’
Declares a PFET pass-transistor with gate g, source s, and drain d. Sizing parameters
W and L are optional. In hflat prsim mode, this prints a uni-directional (sized)
production rule

after 0 "g & s -> 4+

In hflat 1vs mode, this just prints ‘passp(g, s, d)’ back out. Sizes are printed only
if ‘~fsizes’ is passed to hflat.

echo nodes... [Macro]
Diagnostic. This macro just prints ‘echo(. . .)’ back out where the original arguments
are substituted with canonical hierarchical instance (node) names. This demonstrates
how one can add custom PRS macros.

New: Pass-gate parameters may now take optional transistor type overrides (‘1vt, hvt’).

15.4.2 Pass-gates

True pass-gate logic was missing from the original CAST-PRS implementation. A pass-gate
could be emulated as a latch if the ‘direction’ of operation was known at compile time. Not
having to support pass-gates greatly simplified other pieces of the tool-chain, such as LVS
and PRSIM.

We propose the following syntax for pass-gates:

1. node, <- nodey => nodes denotes an NFET connecting node,; and nodes gated by node,

58 The HAC Language

2. node; <+ nodey +> nodes denotes a PFET connecting node; and nodes gated by node,

node; . 3 are production rule literals. In case 1, when node; is logic-1, the nodes on either
side are connected. In case 2, when node, is logic-0, the other terminals are connected. nodes
may be given an optional size to specify the width of the transmission-gate. In all cases,
if nodes on opposite sides are both driving in opposite directions, then it is considered a
short-circuit (error). If neither side is driving, and the nodes’ states are in opposition, then
both nodes will become unknown (X). Otherwise, the one side that is being driven will flip
the other side.

nodes; may be given an optional <size> argument for specifying gate width.
Technically, one may use pass-gate to construct arbitrary transistor topologies.

Writing a production rule in terms of equivalent pass-gates will not produce sane digital
behavior in simulation because of the unidirectional nature of the generated equivalent rule.
(They should, however, result in the same netlist in backends.) Hence, all standard logic
should be writte as rules, not pass-gates.

15.4.3 PRS Supply Overrides

Production rules assume that a pull-up rule is implicitly connected to some high power
supply (often Vdd) and pull-down rules are rooted at some low supply (often GND). The
simulated interpretation of rules is agnostic to the actual supply used. When left unspeciifed,
rules by default connect to the implicit supplies for each process, !'Vdd and !GND. See
Section 10.4 [Implicit Ports|, page 38. For netlist back-ends, however, the way to override
the supply nodes for a block of production rules is to pass in replacement supplies:

e prs< Vdd >{...}
e prs< Vdd , GND > {...}

15.4.4 PRS Substrate Overrides

By default, the supply contact for a set of rules is also used to connect to the substrate
(body) contacts for a given type of transistor. There may be cases where one wants to use
a different substrate connection than the corresponding supply, for instance with power-
gating. The substrate contacts of transistors for netlist back-ends can be overridden with
an additional set of prs parameters:

e prs<.. | BVdd >{...}
e prs<.. | BVdd , BGND >{...}

All arguments are optional; the prs parameters always form a 4-tuple, which includes
the default connections when left unspecified.

15.5 Options

Compiler warnings:

CMOS-implementability (exceptions allowed for attribute). (This happens to be imple-
mented as an error condition in hacknet.)

Staticizers?

Chapter 16: SPEC Directives 59

16 SPEC Directives

This chapter describes the various directives available in the spec sub-language. The fol-
lowing documentation is extracted from source file ‘Object/lang/SPEC_registry.cc’.

NEW: SPEC directives allow references to instances deep in the subinstance hierarchy,
not just through public ports, but through private members as well.

unaliased nodes... [Directive]
Usage: ‘unaliased(...)’
Error out if any of nodes are aliased to each other. Tool-independent. Useful for
verifying that certain nodes are not accidentally connected.

assert P [Directive]
Usage: ‘assert<P>()’

Error out if predicate expression P is false. Note that this is a compile-time check,
which is enforced during unroll/create compilation. Useful for enforcing parametric
constraints. Tool-independent. For run-time invariants, see $(expr)-syntax below.

exclhi nodes... [Directive]
Usage: ‘exclhi(...)’
Emits directives to check that nodes are mutually exclusive high at run-time. (This
corresponds to the old CHECK_CHANNELS method of checking for exclusivity.) In
hacprsim, these form checking rings. In cflat lvs, these directives affect charge-
sharing and sneak-path analysis.

excllo nodes... [Directive]
Usage: ‘excllo(...)’
Emits directives to check that nodes are mutually exclusive low at run-time. (This
corresponds to the old CHECK_CHANNELS method of checking for exclusivity.) In
hacprsim, these form checking rings. In cflat lvs, these directives affect charge-
sharing and sneak-path analysis.

order nodes... [Directive]
For cflat lvs, specify the node checking order for BDD algorithms.

unstaticized node [Directive]
For cflat lvs, specify that node should remain unstaticized.

cross_coupled_inverters xy [Directive]
For cflat lvs, just emit the directive back out with substituted canonical node
names.

mk_exclhi nodes... [Directive]

For cflat prsim and hacprsim, enforce logic-high mutual exclusion among nodes.
This is often used in describing arbiters.

mk_excllo nodes... [Directive]
For cflat prsim and hacprsim, enforce logic-low mutual exclusion among nodes.
This is often used in describing arbiters.

60 The HAC Language

min_sep dist nodes... [Directive]
min_sep_proc dist procs... [Directive]
Usage: ‘min_sep<dist>(nodes...)’

Specify that nodes should have a miminum physical separation of distance dist. nodes
can be organized into aggregate groups: for ‘min_sep({a,b},{c,d})’, a and b must
be separated from c and d. Affects cflat for layout and prsim.

The min_sep_proc variation specifies a minimum distance between two groups of
processes. The referenced process in each group can be of different types.

bool x[2], yl[2];

invl P, A;

inv2 Q, B;

spec {
min_sep<100>(x[0], y[0])
min_sep<100>(x, y)
min_sep<100>({x[0], y[0]l}, {x[1], y[11})
min_sep_proc<50>(P, Q)
min_sep_proc<50>({P,Q}, {A,B})

}

runmodestatic node [Directive]
For cflat lvs, mark this node as one that seldom or never changes value, for the
sake of netlist analysis. NOTE: eventually this directive will be deprecated in favor of
applying a proper node attribute. The decision to implement this as a spec-directive
is an unfortunate consequence of compatibility with another tool.

Another class of specification directives is invariants. Invariants are conditions which
should always hold true. Invariants are useful for telling other tools what assumptions can
be made about circuits. exclhi and excllo are examples of invariants that use the normal
directive syntax.

$ PRS-expr [message] [Directive]
This declares a run-time invariant expression that is emits invariant directives to
back-end tools and also tells simulators to check and report violations of violations,
similar to exclhi and excllo. PRS-expr is a production rule guard that should
always be true. Invariants also accept an optional argument after the expression for
a more informative description string. These strings can be printed by back-end tools
that understand invariants.
spec {
$C(x & y))
$(C"(x & y), "at least one of these should be false at all times")
}

is equivalent to exclhi(x, y).

Appendix A: Keywords 61

Appendix A Keywords

This appendix describes some of the keywords and terminal tokens in the HAC language.
The following are all special words recognized by the lexer.

Terminals (tokens):
TODO: extract from yacc output file.
Keywords:

__FILE__ A string that repesents the current file (absolute path).

__LINE__ Compile-time integer (pint) that holds the current line number in the input
stream or file.

import The directive for including another source file. Automatically ignores the file if
it was already read. (implicit pragma-include-once)

#FILE Reserved, not intended for general use. Embedded file directive, emitted by
flattening a source file’s import directives recursively. Allows a single file to
behave as if sections were included hierarchically.

Appendix B: Grammar 63

Appendix B Grammar

"Yacc" owes much to a most stimulating collection of users, who have goaded
me beyond my inclination, and frequently beyond my ability in their endless
search for "one more feature". Their irritating unwillingness to learn how to do
things my way has usually led to my doing things their way; most of the time,
they have been right.

—S. C. Johnson, "Yacc guide acknowledgements

This appendix describes the HAC language’s grammar. The grammar is context-free
and LR(1), so traditional yacc and bison (LALR(1)) parser generators will work with it.

0 $accept: module $end

1 module: embedded_module

2 embedded_module: imports_optional top_root
3 imports_optional: imports

4 | /* empty */

5 imports: imports import_item

6 | import_item

7 import_item: IMPORT

8 | EMBEDFILE BEGINFILE embedded_module ENDFILE
9 top-root: body

10 | /* empty */

11 body: body body_item
12 | body_item
13 body_item: namespace_item

14 | definition

15 | prototype_declaration

16 namespace_item: namespace_management

17 | instance_item_extended

18 | type_alias

19 namespace_management: NAMESPACE ID ’{’ top_root '}’
20 | OPEN namespace_id RARROW ID

21 | OPEN namespace_id ’;’

22 namespace_id: relative_id
23 definition: defproc

24 | defdatatype

25 | defchan

26 | defenum

27 prototype_declaration: declare_proc_proto ’;’
28 | declare_datatype_proto ’;’
29 | declare_chan_proto ’;’

30 | declare_enum ’;’

31 type_alias: optional_export optional_template_specification TYPEDEF physical_type_ref ID ’;’
32 template_specification: TEMPLATE template_formal_decl_list_in_angles

33 | TEMPLATE template_formal_decl_list_optional_in_angles template_formal_decl_nodefault_list_in_anglesf]
34 optional_template_specification: template_specification

35 | /* empty */

36 optional_export: EXPORT

37 | /* empty */

38 def_or_proc: DEFINE

39 | DEFPROC

40 declare_proc_proto: optional_export optional_template_specification def_or_proc ID optional_port_formal_decl_list_in_parensfi]
41 defproc: declare_proc_proto ’{’ optional_definition_body '}’

42 optional_port_formal_decl_list_in_parens: '(’ port_formal_decl _list ’)’

43 | 7(’ 7)7

44 template_formal_decl_list_in_angles: <’ template_formal_decl_list ’>’

64 The HAC Language

45 template_formal_decl_nodefault_list_in_angles: ’<’ template_formal_decl_nodefault_list ’>’
46 template_formal_decl_list_optional_in_angles: template_formal_decl_list_in_angles

47 | 7<) 7>7

48 template_formal_decl_list: template_formal_decl_list ’;’ template_formal_decl

49 | template_formal_decl

50 template_formal_decl_nodefault_list: template_formal_decl_nodefault_list ’;’ template_formal_decl_nodefaultl
51 | template_formal_decl_nodefault

52 template_formal_decl: base_param_type template_formal_id_list
53 template_formal_decl_nodefault: base_param_type template_formal_id_nodefault_list
54 template_formal_id_list: template_formal_id_list ’,” template_formal_id

55 | template_formal_id

56 template_formal_id_nodefault_list: template_formal_id_nodefault_list ’,” template_formal_id_nodefault
57 | template_formal_id_nodefault

58 template_formal_id_default: ID optional_dense_range_list "=’ expr

59 template_formal_id_nodefault: ID optional_dense_range_list
60 template_formal_id: template_formal_id_default

61 | template_formal_id_nodefault
62 port_formal_decl_list: port_formal_decl_list ’;” port_formal_decl
63 | port_formal_decl

64 port_formal_decl: port_physical_type_ref port_formal_id_list
65 port_formal_id_list: port_formal_id_list ’,” port_formal_id

66 | port_formal_id

67 port_formal_id: ID optional_dense_range_list

68 port_generic_type_ref: generic_type_ref optional_chan_dir

69 generic_type_ref: generic_id strict_relaxed_template_arguments
70 optional_chan_dir: chan_dir

71 | /* empty */

72 chan_dir: ’?’

73 | 7P

74 | 7?7 7?7

75 | Py

76 port_physical_type_ref: port_generic_type_ref
77 | port_base_chan_type

78 | port_base_data_type_ref
79 physical_type_ref: generic_type_ref

80 | base_chan_type

81 | base_data_type_ref

82 port_base_data_type_ref: base_data_type_ref optional_chan_dir
83 base_data_type_ref: base_data_type strict_relaxed_template_arguments
84 data_type_ref: base_data_type_ref

85 | generic_type_ref

86 type_id: physical_type_ref

87 | base_param_type

88 base_param_type: PINT_TYPE
89 | PBOOL_TYPE
90 | PREAL_TYPE
91 | PSTRING_TYPE

92 port_base_chan_type: chan_or_port data_type_ref_list_optional_in_parens
93 base_chan_type: CHANNEL data_type_ref_list_optional_in_parens

94 chan_or_port: CHANNEL optional_chan_dir

95 data_type_ref_list_optional_in_parens: ’(’ data_type_ref_list_optional)’
96 data_type_ref_list_optional: data_type_ref_list

97 | /* empty */
98 data_type_ref_list: data_type_ref_list ’,” data_type_ref
99 | data_type_ref

100 base_data_type: INT_TYPE
101 | BOOL_TYPE

Appendix B: Grammar 65

102 declare_datatype_proto: optional_export optional_template_specification DEFTYPE ID DEFINEOP data_type_ref op-li
tional_port_formal_decl_list_in_parens

103 defdatatype: declare_datatype_proto '{’ optional_datatype_body set_body_optional get_body_optional '}’

104 set_body_optional: set_body

105 | /* empty */
106 get_body_optional: get_body
107 | /* empty */

108 set_body: SET ’{’ chp_body_optional '}’

109 get_body: GET ’{’ chp_body_optional '}’

110 declare_enum: ENUM ID

111 defenum: ENUM ID ’{’ enum_member _list '}’

112 enum_member_list: enum_member_list ;" ID

113 | ID

114 declare_chan_proto: optional_export optional_template_specification DEFCHAN ID DEFINEOP base_chan_type op-li
tional_port_formal_decl_list_in_parens

115 defchan: declare_chan_proto ’{’ optional_datatype_body send_body_optional recv_body_optional ’}’

116 send_body_optional: send_body

117 | /* empty */
118 recv_body_optional: recv_body
119 | /* empty */

120 send_body: SEND ’{’ chp_body_optional '}’
121 recv_body: RECV ’{’ chp_body_optional '}’
122 definition_body: definition_body definition_body_item

123 | definition_body_item

124 definition_body_item: instance_item_extended

125 | type_alias

126 optional_definition_body: definition_body

127 | /* empty */

128 optional_datatype_body: datatype_body

129 | /* empty */

130 datatype_body: datatype_body datatype_body_item
131 | datatype_body_item

132 datatype_body_item: connection_body_item

133 | lang_spec

134 connection_body_optional: connection_body

135 | /* empty */

136 connection_body: connection_body connection_body_item
137 | connection_body_item

138 connection_body_item_base: connection_statement

139 | nonempty_alias_list ’;’

140 | instance_direction_statement

141 | instance_type_completion_statement

142 | instance_type_completion_connection_statement
143 | instance_attribute_statement

144 connection_body_item: connection_body_item_base

145 | loop_connections

146 | conditional_connections

147 instance_management_list_optional: instance_management_list

148 | /* empty */

149 instance_management_list: instance_management_list instance_item_extended
150 | instance_item_extended

151 instance_item_extended: instance_item

152 | language_body

153 instance_item: type_instance_declaration

154 | connection_body_item_base

155 | loop-instantiation

156 | conditional_instantiation

157 loop_instantiation: ’(’ ’;” ID ’:” range ’:’ instance_management_list ’)’

66 The HAC Language

158 conditional_instantiation: [* guarded._instance_management_list ’]’
159 loop_connections: ’(’ ;> ID " range ’:’ connection_body ’)’

160 conditional_connections: ’[* guarded_connection_body ’|’

161 type_instance_declaration: type_id instance_id_list ’;’

162 instance_id_list: instance_id_list ’,” instance_id_item

163 | instance_id_item

164 instance_id_item: ID optional_template_arguments_in_angles sparse_range_list

165 | ID optional_template_arguments_in_angles

166 | ID optional_template_arguments_in_angles extended_connection_actuals_list
167 | ID optional_template_arguments_in_angles =’ alias_list

168 connection_statement: member_index_expr extended_connection_actuals_list ’;’
169 extended_connection_actuals_list: optional_implicit_global_connections connection_actuals_list

170 | implicit_global_connections
171 optional_implicit_global_connections: implicit_global_connections
172 | /* empty */

173 implicit_global_connections: '$’ member_index_expr_list_in_parens
174 generic_attribute: ID '=" expr_list

175 | ID

176 | string

177 generic_attribute_list: generic_attribute_list ’;” generic_attribute
178 | generic_attribute

179 generic_attribute_list_in_brackets: ’[" generic_attribute_list]’

180 instance_type_completion_statement: index_expr complex_expr_optional_list_in_angles ’;’

181 | generic_id complex_expr_optional _list_in_angles ’;’

182 instance_direction_statement: member_index_expr chan_dir ’;’

183 instance_attribute_statement: member_index_expr '@ generic_attribute_list_in_brackets ’;’

184 instance_type_completion_connection_statement: index_expr complex_expr_optional_list_in_angles ex-
tended_connection_actuals_list ’;’

185 | generic_id complex_expr_optional_list_in_angles ex-
tended_connection_actuals_list ’;’

186 nonempty_alias_list: nonempty_alias_list '=" complex_aggregate_reference

187 | complex_aggregate_reference =’ complex_aggregate_reference

188 alias_list: alias_list =" complex_aggregate_reference

189 | complex_aggregate_reference

190 connection_actuals_list: ’(’ complex_aggregate_reference_list ’)’

191 guarded_instance_management_list: guarded_instance_management_list_unmatched THICKBAR in-
stance_management _else_clause

192 | guarded_instance_management_list_unmatched

193 guarded_instance_management_list_unmatched: guarded_instance_management_list_unmatched THICK-
BAR guarded_instance_management

194 | guarded_instance_management

195 guarded_instance_management: expr RARROW instance_management_list_optional

196 instance_management_else_clause: ELSE RARROW instance_management _list_optional

197 guarded_connection_body: guarded_connection_body_unmatched THICKBAR connection_body _else_clausell

198 | guarded_connection_body_unmatched

199 guarded_connection_body_unmatched: guarded_connection_body_unmatched THICKBAR guarded_connection_body_clausefl

200 | guarded_connection_body_clause

201 guarded_connection_body_clause: expr RARROW connection_body_optional

202 connection_body _else_clause: ELSE RARROW connection_body_optional

203 language_body: CHP_LANG ’{’ chp_body_optional '}’

204 | HSE_.LANG ’{’ hse_body_optional '}’
205 | PRS_.LANG member_index_expr_list_in_angles_optional '{’ prs_body_optional '}’
206 | lang_spec

207 lang_spec: SPEC_LANG ’{’ spec_body_optional '}’
208 chp_body: full_chp_body_item_list

209 chp_body_optional: chp_body

210 | /* empty */

211 chp_body_or_skip: chp_body

Appendix B: Grammar 67

212 | SKIP

213 chp_sequence_group: '{’ full_chp_body_item_list '}’

214 full_chp_body_item_list: full_chp_body_item_list ’;’ full_chp_body_item
215 | full_chp_body_item

216 full_chp_body_item: chp_concurrent_group

217 chp_body_item: chp_statement_attributes chp_statement

218 | chp_statement

219 chp_statement_attributes: ’$’ ’(’ generic_attribute_list ’)’

220 chp_statement: chp_loop

221 | chp_do_until

222 | chp_selection

223 | chp_wait

224 | chp_binary_assignment
225 | chp_bool_assignment
226 | chp_send

227 | chp_recv

228 | chp_peek

229 | chp_metaloop_selection
230 | chp_metaloop_statement
231 | function_call_expr

232 chp_loop: BEGINLOOP chp_body '’

233 chp_do_until: BEGINLOOP chp_unmatched_det_guarded_command_list ']’
234 chp_wait: [’ chp_guard_expr]’

235 chp_selection: [’ chp_matched_det_guarded_command_list]’

236 | ’[" chp-nondet_guarded_command_list ']’

237 chp_metaloop_selection: [’’’ ID ’:” range '’ chp_guarded_command ’]’

238 | [THICKBAR ID ’:’ range "’ chp_guarded_command ']’

239 chp_metaloop_statement: {’ ’,” ID ’:” range ;" chp_body '}’

240 | ’{" 7 ID "’ range ’:’ chp_body '}’

241 chp_nondet_guarded_command_list: chp_nondet_guarded_command_list ’:” chp_guarded_command

242 | chp_guarded_command ’:’ chp_guarded_command

243 chp_matched_det_guarded_command_list: chp_unmatched_det_guarded_command_list THICKBAR chp_else_clausel}
244 | chp_unmatched_det_guarded_command_list

245 chp_unmatched_det_guarded_command_list: chp_unmatched_det_guarded_command_list THICKBAR chp_guarded_command
246 | chp_guarded_command

247 chp_guarded_command: chp_guard_expr RARROW chp_body_or_skip

248 chp_guard_expr: chp_logical_or_expr

249 chp_unary_bool_expr: chp_simple_bool_expr

250 | chp_not_expr

251 | ’(’ chp_logical_or_expr ’)’
252 | chp_probe_expr

253 | function_call_expr

254 chp_probe_expr: '#’ member_index_expr
255 chp_simple_bool_expr: member_index_expr

256 | BOOL_.TRUE

257 | BOOL_FALSE

258 chp_unary_expr: -’ chp_unary_expr

259 | chp_unary_bool_expr

260 | loop_expr

261 | INT

262 | FLOAT

263 chp_mult_expr: chp_unary_expr

264 | chp_mult_expr muldiv_op chp_unary_expr
265 chp_add_expr: chp_mult_expr

266 | chp_add_expr_only

267 chp_add_expr_only: chp_add_expr '+’ chp_mult_expr
268 | chp-add_expr -’ chp_mult_expr

269 chp_paren_add_expr: ’(’ chp_add_expr_only ’)’

68 The HAC Language

270 | chp_mult_expr

271 chp_shift_expr: chp_paren_add_expr

272 | chp_shift_expr EXTRACT chp_add_expr

273 | chp_shift_expr INSERT chp_add_expr

274 chp_relational _expr: chp_shift_expr relational_op chp_shift_expr

275 | chp_paren_add_expr

276 chp_bitwise_and_expr: chp_relational _expr

277 | chp_bitwise_and_expr '&’ chp_relational_expr

278 chp_bitwise_xor_expr: chp_bitwise_and_expr

279 | chp_bitwise_xor_expr *~’ chp_bitwise_and_expr

280 chp_bitwise_or_expr: chp_bitwise_xor_expr

281 | chp_bitwise_or_expr ’|’ chp_bitwise_xor_expr

282 chp_logical_and_expr: chp_bitwise_or_expr

283 | chp_logical_and_expr LOGICAL_AND chp_bitwise_or_expr
284 chp_logical_or_expr: chp_logical_and_expr

285 | chp_logical_or_expr LOGICAL_OR chp_logical_and_expr

I~

286 chp_not_expr: chp_unary_bool_expr

287 chp_else_clause: ELSE RARROW chp_body_or_skip

288 chp_binary_assignment: member_index_expr ASSIGN expr
289 chp_bool_assignment: member_index_expr '+’

290 | member_index_expr ’-’

291 chp_concurrent_item: chp_body_item

292 | chp_sequence_group

293 chp_concurrent_group: chp_concurrent_group ’,” chp_concurrent_item
294 | chp_concurrent_item

295 chp_send: member_index_expr ’!” connection_actuals_list

296 | member_index_expr !’

297 chp_recv: member_index_expr ’?’ member_index_expr_list_in_parens_optional
298 chp_peek: member_index_expr '#’ member_index_expr_list_in_parens

299 hse_body_optional: hse_body

300 | /* empty */

301 hse_body: full_hse_body_item_list

302 full_hse_body_item_list: full_hse_body_item_list ’;’ full_hse_body_item

303 | full_hse_body_item

304 full_hse_body_item: hse_body_item

305 hse_body_item: hse_loop

306 | hse_do_until
307 | hse_wait

308 | hse_selection
309 | hse_assignment
310 | SKIP

311 hse_loop: BEGINLOOP hse_body]’

312 hse_do_until: BEGINLOOP hse_matched_det_guarded_command_list ']’

313 hse_wait: [’ expr '’

314 hse_selection: '[* hse_matched_det_guarded_command_list ']’

315 | ’[" hse_nondet_guarded_command_list]’

316 hse_guarded_command: expr RARROW hse_body

317 hse_else_clause: ELSE RARROW hse_body

318 hse_nondet_guarded_command_list: hse_nondet_guarded_command_list ’:” hse_guarded_command

319 | hse_guarded_command ’:” hse_guarded_command
320 hse_matched_det_guarded_command_list: hse_unmatched_det_guarded_command_list THICKBAR hse_else_clausell
321 | hse_unmatched_det_guarded_command_list

322 hse_unmatched_det_guarded_command_list: hse_unmatched_det_guarded_command_list THICKBAR hse_guarded_command}
323 | hse_guarded_command

324 hse_assignment: unary_assignment

325 prs_body_optional: prs_body

326 | /* empty */

327 prs_body: prs_body prs_body_item

Appendix B: Grammar 69

328 | prs_body_item

329 prs_body_item: single_prs

330 | prs_loop

331 | prs_conditional

332 | prs_macro

333 | TREE_LANG optional_template_arguments_in_angles '{’ prs_body_optional "}’

334 | SUBCKT_LANG optional_template_arguments_in_angles '{’ prs_body_optional ’}’

335 prs_macro: prs_literal mandatory_member_index_expr_list_in_parens

336 | generic_attribute_list_in_brackets prs_literal mandatory_member_index_expr_list_in_parens

337 prs_loop: '(’ ’:> ID '’ range ’:” prs_body)’

338 prs_conditional: ’[" prs_guarded_list ']’

339 prs_guarded_list: prs_guarded _list_unmatched THICKBAR prs_else_clause

340 | prs_guarded_list_unmatched

341 prs_guarded_list_unmatched: prs_guarded_list_unmatched THICKBAR prs_guarded_body
342 | prs_guarded_body

343 prs_guarded_body: expr RARROW prs_body_optional

344 prs_else_clause: ELSE RARROW prs_body_optional

345 single_prs: generic_attribute_list_in_brackets prs_expr prs_arrow prs_literal_base dir

346 | prs_expr prs_arrow prs_literal_base dir
347 prs_arrow: RARROW

348 | IMPLIES

349 | HASH_. ARROW

350 dir: '+’

351 |2

352 prs_expr: prs_or

353 prs_paren_expr: (" prs_expr ')’

354 prs_literal_base: relative_member_index_expr

355 | '@’ ID optional_dense_range_list

356 prs_literal: prs_literal_base prs_literal_params_in_angles_optional

357 prs_literal_params_in_angles_optional: ’<’ prs_literal_params_optional ’;’ generic_attribute_list '>’

358 | ’<’ prs_literal_params ">’
359 | /* empty */

360 prs_literal_params_optional: prs_literal_params

361 | /* empty */

362 prs_literal_params: prs_literal_params ’,” prs_literal_param
363 | prs_literal_param

364 prs_literal_param: expr
365 prs_unary_expr: prs_literal

366 | prs_paren_expr

367 | prs_and_loop

368 | prs_or_loop

369 prs_not: ’~’ prs_unary_expr

370 | prs_unary_expr

371 prs_and: prs_and '&’ prs_operator_attribute_optional prs_not
372 | prs_not

373 prs_or: prs_or ’|’ prs_and

374 | prs_and

375 prs_operator_attribute: {’ dir prs_expr '}’
376 prs_operator_attribute_optional: prs_operator_attribute

377 | /* empty */

378 prs_and_loop: '(’ '&’ :’ ID ’:” range ':’ prs_expr ')’
379 prs_or_loop: '(’ ’|” 2 ID ’:’ range '’ prs_expr ’)’
380 spec_body_optional: spec_body

381 | /* empty */

382 spec_body: spec_body spec_item

383 | spec_item

384 spec_item: spec_directive
385 | spec_invariant

70 The HAC Language

386 spec_invariant: '$’ ’(’ prs_expr ’)’

387 | ’$ ’(’ prs_expr ’,” string ’)’

388 spec_directive: ID expr_list_in_angles_optional grouped_reference_list_in_parens
389 grouped_reference_list_in_parens: ’(’ grouped_reference_list_optional)’

390 grouped_reference_list_optional: grouped_reference_list

391 | /* empty */

392 grouped _reference_list: grouped_reference_list ’,” grouped_reference
393 | grouped_reference

394 grouped_reference: '{’ mandatory_member_index_expr_list '}’

395 | member_index_expr

396 paren_expr: '(’ expr)’
397 literal: INT

398 | FLOAT

399 | string

400 | BOOL_-TRUE
401 | BOOL_FALSE
402 string: string STRING
403 | STRING

404 id_expr: generic_id

405 generic_id: relative_id

406 | absolute_id

407 absolute_id: SCOPE relative_id
408 relative_id: qualified_id

409 | ID
410 qualified_id: qualified_id SCOPE ID
411 | ID SCOPE ID

412 mandatory_member_index_expr_list_in_parens: ’(’ mandatory_member_index_expr_list ’)’
413 mandatory _member_index_expr_list: mandatory_member_index_expr_list ’,” member_index_expr

414 | member_index_expr

415 member_index_expr_list: member_index_expr_list ’,” optional_member_index_expr
416 | optional_member_index_expr

417 member_index_expr_pair: optional_member_index_expr ’,” optional_member_index_expr
418 | optional_member_index_expr

419 optional_member_index_expr: member_index_expr
420 | /* empty */

421 member_index_expr: id_expr

422 | index_expr

423 | member_expr

424 relative_member_index_expr: 1D

425 | local_index_expr

426 | local_member_expr

427 local_index_expr: local_member_expr sparse_range_list
428 | ID sparse_range_list

432 index_expr: member_expr sparse_range_list

433 | id_expr sparse_range_list

437 simple_expr: member_index_expr

438 | literal

439 unary_expr: simple_expr

440 | function_call_expr

441 | paren_expr

442 | loop_expr

443 -’ unary_expr

444 | 'V unary_expr

445 | >~ unary_expr

446 function_call_expr: member_index_expr optional_implicit_global _connections connection_actuals_list
447 multiplicative_expr: unary_expr

448 | multiplicative_expr muldiv_op unary_expr

449 muldiv_op: "*’

Appendix B: Grammar 71

450)

451 | "%

452 additive_expr: multiplicative_expr

453 | additive_expr '+’ multiplicative_expr

454 | additive_expr ’-> multiplicative_expr

455 shift_expr: additive_expr

456 | shift_expr EXTRACT additive_expr

457 | shift_expr INSERT additive_expr

458 relational_equality_expr: shift_expr

459 | (" relational_equality_expr <’ shift_expr ’)’
460 | ’(’ relational_equality _expr '>’ shift_expr)’
461 | relational_equality_expr LE shift_expr

462 | relational_equality_expr GE shift_expr

463 | relational_equality_expr EQUAL shift_expr
464 | relational_equality_expr NOTEQUAL shift_expr
465 | ’(’ relational_equality _expr =" shift_expr ’)’
466 relational_op: '<’

467 [7>’

468 | LE

469 | GE

470 | EQUAL

471 | NOTEQUAL

472 and_expr: relational_equality _expr

473 | and_expr '&’ relational_equality_expr

474 exclusive_or_expr: and_expr

475 | exclusive_or_expr ’~’ and_expr

476 inclusive_or_expr: exclusive_or_expr

477 | inclusive_or_expr ’|’ exclusive_or_expr

478 logical_and_expr: inclusive_or_expr

479 | logical_and_expr LOGICAL_AND inclusive_or_expr
480 logical_or_expr: logical_and_expr

481 | logical_or_expr LOGICAL_OR logical_and_expr
482 unary_assignment: member_index_expr PLUSPLUS

483 | member_index_expr MINUSMINUS

)

484 loop_expr: ’(’ loop_assoc_op "> ID " range " expr)
485 loop_assoc_op: '+’

486 | %

487 | &’

488 L

489 [

490 | LOGICAL_AND
491 | LOGICAL_OR

492 expr: logical_or_expr

493 strict_relaxed_template_arguments: complex_expr_optional _list_in_angles optional_template_arguments_in_anglesfli
494 | /* empty */

495 optional_template_arguments_in_angles: complex_expr_optional _list_in_angles
496 | /* empty */

497 expr_list_in_angles_optional: expr_list_in_angles

498 | /* empty */

499 expr_list_in_angles: <’ expr_list '>’

500 complex_expr_optional_list_in_angles: <’ complex_expr_optional_list >’

501 complex_expr_optional_list: complex_expr_optional_list ’,” optional_complex_expr
502 | optional_complex_expr

503 optional_complex_expr: array_concatenation

504 | /* empty */

505 member_index_expr_list_in_parens_optional: member_index_expr_list_in_parens
506 | /* empty */

507 member_index_expr_list_in_parens: '(’ member_index_expr_list ’)’

72 The HAC Language

508 member_index_expr_list_in_angles_optional: member_index_expr_list_in_angles

509 | /* empty */

510 member_index_expr_list_in_angles: '<’ member_index_expr_pair ">’
511 | ’<> member_index_expr_pair ’|” member_index_expr_pair >’
512 expr_list: expr_list ’,” expr

513 | expr

514 range: expr RANGE expr

515 | expr

516 optional_dense_range_list: dense_range_list

517 | /* empty */

518 dense_range_list: dense_range_list bracketed_dense_range

519 | bracketed_dense_range

520 sparse_range_list: sparse_range_list bracketed_sparse_range

521 | bracketed_sparse_range

522 bracketed_dense_range: [’ expr ']’

523 bracketed_sparse_range: [’ range ']’

524 complex_aggregate_reference: array_concatenation

525 array_concatenation: array_concatenation '#’ complex_expr_term

526 | complex_expr_term
527 complex_expr_term: array_construction
528 | expr

529 array_construction: '{’ mandatory_complex_aggregate_reference_list '}’
530 optional_complex_aggregate_reference: complex_aggregate_reference

531 | /* empty */

532 mandatory_complex_aggregate_reference_list: mandatory_complex_aggregate_reference_list ’,” com-
plex_aggregate_reference

533 | complex_aggregate_reference

534 complex_aggregate_reference_list: complex_aggregate_reference_list ’,” optional_complex_aggregate_referencell
535 | optional_complex_aggregate_reference

Function Index

73

74

Function Index

after 53
after_max..........oiiiiii 53
after_min....... ..ot 53
always_random..........ooiiiiiiiiiiiiii. 54
ASSET L it 59
AULOKEEPET 39

eChO .. 57
exClhi ... 59
EXCLLO it 59

ignore_interfere...............o 39
ignore_weak_interfere....................... 40
isckeeper............. i 54
iscomb............ 39
iskeeper......... ...l 54
Isrvel oo 39
ISTVC2 . oo 39
ISTVCS o 39

Lo 53
label ..o 55
10@ACAP - - 54
IVt o 54, 55

The HAC Language

M

min_sep.......... il 60
MiNn_SEeP_PrOC ...ttt 60
mk_exclhi...... ... 59
MK_eXCLlO. . ittt e 59

Poreff oo 54
PASSIL . ottt et 57
PASSD ettt 57

TCONA v ittt et e e 10
== PP 54
oy =1=1= 2 v 39
g 11T S 11
TIATL © ettt 11
TEOZ ettt 11
runmodestatic 60

S

sprint ... 10
StrCat . v 10
SELCONA . ottt 10
SETLOD . 11
=37 o AP 11
SETLOZ .ot 11
SUPPLY ..o 39
=372 54, 55

unaliased........c.iiiiii i 59
unstab 53
unstaticized i 59

ZCONA .« o\t 10
411t P 11
ZIAT o 11

Concept Index

Concept Index

A

action loops i 48
aggregate references 15
allases. . ..o 37
arithmetic operators......................... ... 9
array concatenation.................. ...l 15
array construction............... ... oL 16
array declarationso 14
array references........ oo 14
AITAYS « v ee ettt e et e 13
arrays, denseooiiiiiiii . 13
arrow, PRS shorthand 51
assignment in CHP oo .. 47
asynchronous VLSI......... 3
attributeso 39
attributes, nodeol 53
attributes, PRS.......... o 53
attributes, rule 53
automatic connections................ 38

B

bit fields. ... 46
bit Slices. ...t 46
bitwise operators L. 10
body contacts i 58
boolean data typeo 23
built-in data types......... oL 23

C

call statements i 49
canonical definition.......... oL 41
CAST 5
channel directions o 19
channel receiveo i 46
channel receivingol 19
channel send0 i 46
channel sending ..., 19
channel types, fundamental 21
channel types, user-defined..................... 21
channels.......... ... i 19, 46
CHP .o 45
CMOS-implementable PRS 51
complete type 8
concatenation or arrays........................ 15
concrete layout map oL 7
concurrent composition 47, 49
CONNECHIONS . ..ottt 37
construction of arrays...................... 16
CSP 5, 45

75
D
data types........... i 23
data types, user-defined..................... ... 24
datatypes i 23
default parameter values....................... 28
default template parameters................... 28
definition layoutol 7
definition names oL 8
definitions............ ... o i 7
dense arrays..............oiiiiiiiiiiii 13
design automation............ oL 3
design space exploration 3
deterministic selection...................... 48, 49
direction of channels........................... 19
do-while loop......... oo 49
E
13002 = 5
enumeration type.......... ... 24
equivalent, templates 27
EXPIESSIONS « . vt v ettt 9
expressions in CHPo .. 45
F
flow control in CHP 48
fork .. 47
forwar declaration, template 27
forward declaration, process 17
function calls........ i 49
function expressionso 10
fundamental channel types..................... 21
G
goals . L 3
GTATNINAT . .ot vvte ettt e e et 63
guarded commando i 48
H
hierarchical references 37
hiStory ... 5
I
implicit ports. ... 38
implicit size of array reference 15
implicit supply ... 38
importing namespaces 25
instance references............... .. il 37

integer data type.......... il 23

76
internal nodes 52
introduction............ 5

L

linkage ... 43
literal attributes, PRS........... 55
literal, PRSo 51
logical operators.............. 10
loop composition in CHP 49
loop concatenationcoiiiiii.. 16
loop constructs in CHP 49
loops (PRS) .. .ovini 56
loopsin CHP....... .o o i 48

M

macros, PRS 56
MEta-EXPreSSIONS. . oottt 9

N

namespace identifiers.......... oo 25
namespace resolution 25
TNAINESPACES .+« o v e et ttiee e et 25
node attributes.......... ... oo oo 53
nondeterministic selection.................. 48, 49
nonmeta value assignment 47
nonmeta value references 45

O

operator attributes, PRS............... 55
operator precedencecoiiiiiiiiiaa.. 9
OPETALOTS « . vttt ettt 9
operators in CHP.............................. 45

P

parallel composition........................ 47, 49
parameters, template 7
PASS-ZALES « .\t 57
port connections. 37
port direction i 17
POTtS, PrOCESS ..ottt ittt 17
POwWer Supply ...t 38, 58
precharge........... ool 55
primary supply ... i 38

PLOCESS . o ettt ettt et e e 17

The HAC Language

process definitions L 17, 18
process forward declaration.................... 17
PrOCESS POTES .o vt vt 17
program transformation................ 3
PRS . 51
PRSmMacros.......ooovviiiiiii .. 56
PISIM. .o 53

range exXpressionsSouuuiiiniiii i 9
range-equivalence............. ... 14
receive on channel L 46
receiving on channels.......... L 19
relational operators.............. 10
relaxed templates........... il 30
rule attributes...... oo 53
rule loop ... 56

S

selection, deterministic..................... 48, 49
selection, nondeterministic 48, 49
send on channel L 46
sending on channels 19
sequential composition..................... 47, 49
shared nodes o i, 52
shared transistors..................o 52
shorthand PRS arrow.......................... 51
signature equivalence 27
size-equivalence............ ... oo i 13
sizing of PRS ... oo 51, 55
skip statement......... oo 47
SPEC directives ..., 59
specialization, templates....................... 32
substrate overrides. L. 58
supply domain............ .o i 38
supply overrides 58
SUPPLY POTES . vttt 38

T

template forward declarations.................. 27
template parameters.......... 7
template signature........... L 27
template specialization 32
template type equivalence 28
templates........ ... 27
transistor type override........... 55
type completeness 8
type definitions............ .o i 7
type equivalence......... il 41
type equivalence, template..................... 28
typedefs. 41
DY PeS 7

Concept Index

U

user-deffined data types........................ 24
user-defined channel types............. 21

\%

value references in CHP 45
Verilog ..o 3

7

VHDL ... 3
72 S P 5
visibility 43
VLSL . 3

\%\%

wait statement L. 47

	Preface
	Goals
	Design Automation
	Design Space Exploration
	Asynchrony

	Introduction
	Purpose
	Roots
	Overview

	Types
	Parameters
	Definitions
	Physical Layout
	Names

	Completeness and Usability
	Instantiation
	Connection
	Typedefs

	Future extensions

	Expressions
	Range expressions
	Built-in Operators
	Arithmetic Operators
	Relational Operators
	Bitwise Operators
	Logical Operators

	Function expressions

	Arrays
	Dense arrays
	Sparse arrays
	Size-equivalence
	Declarations
	References
	Implicit size

	Aggregates
	Array concatenation
	Array construction
	Loop concatenation

	Issues

	Processes
	Declarations
	Ports
	Forward declarations

	Definitions
	Process definition body

	Channels
	Sending and Receiving
	Connections and Directions

	Fundamental Channel Types
	User-defined Channel Types
	Issues
	Typedefs
	Channel Relaxed Templates

	Datatypes
	Built-in datatypes
	Booleans
	Integers

	Enumerations
	User-defined datatypes
	Declarations
	Definitions
	Views

	Namespaces
	Identifiers
	Importing
	Resolution
	Issues

	Templates
	Terminology
	Forward declarations
	Template signature equivalence

	Default values
	Type-equivalence
	Template Examples

	Type Parameters
	Template Template Parameters
	Template Specialization
	Partial Ordering of Specializations
	Template Argument Deduction
	Template Definition Bindings
	Issues
	Relaxed Parameters
	Template Parameter References
	Template Specializations

	Future

	Connections
	Instance References
	Aliases
	Port Connections
	Implicit Ports

	Attributes
	Bool Attributes
	Channel Attributes
	Process Attributes

	Typedefs
	Type-equivalence
	Questions

	Linkage
	Visibility
	Ordering
	Questions

	Communicating Hardware Processes
	Expressions
	Value References
	Operators
	Bit Slices

	Channels
	Statements
	Communications
	Assignments
	Wait
	Composition
	Skip

	Flow Control
	Loops
	Guarded Commands
	Deterministic Selection
	Nondeterministic Selection
	Do-While

	Metaparameter loop constructs
	Extensions
	Function Calls

	Production Rule Set (PRS)
	Basics
	Sizing
	Internal Nodes

	Attributes
	Node attributes
	Rule attributes
	Literal attributes
	Operator attributes

	Loops
	Extensions
	Macros
	Pass-gates
	PRS Supply Overrides
	PRS Substrate Overrides

	Options

	SPEC Directives
	Keywords
	Grammar
	Function Index
	Concept Index

