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Abstract

We discuss the design of energy-efficient pipelines for
asynchronous VLSI architectures. To maximize through-
put in asynchronous pipelines it is often necessary to in-
sert buffer stages, increasing the energy overhead. Instead
of optimizing pipelines for minimum energy or maximum
throughput, we consider a joint energy-time metric of the
form E��, whereE is the energy per operation and � is the
time per operation. We show that pipelines optimized for
the E�� energy-time metric may need fewer buffer stages
and we give bounds when such stages can be removed. We
present several common asynchronous pipeline structures
and their energy-time optimized solutions.

1. Introduction

Designing systems for the joint energy-time metric,
E��, involves a non-trivial tradeoff between performance
and power consumption. Given a fixed �, which determines
the desired optimization point between time and energy, it
is not immediately apparent how much cycle time (� ) we
should sacrifice for energy (E) and vice-versa. In this pa-
per, we analyze the energy-time optimization problem for
asynchronous pipelines and show how our pipeline results
can be applied to micro-architectural design issues.

The dynamics of asynchronous pipelines are well known
and it is straightforward to optimize systems for steady-
state throughput [1, 4, 15]. Peak pipeline throughput oc-
curs when the handshakes of each pipeline stage operate
at their maximum rate. To achieve this, it is usually nec-
essary to space tokens physically across the pipeline by
adding buffer stages in between computation stages (this
procedure is called slack matching [10]). The number of
additional buffers (called slack-matching buffers) required
depends on the circuit characteristics of the pipeline stages.
For instance, Quasi-Delay Insensitive (QDI) asynchronous
circuits typically need either 8 half-buffers per token or 4

full-buffers per token to operate at full throughput [10].
In systems with deep pipelines and wide datapaths,

slack-matching buffers can consume excessive energy.
Since these buffers are added only for performance reasons,
we are free to vary their number without changing the cor-
rectness of the system.1 For energy-efficient designs the
number of slack-matching buffers will be less than or equal
to the throughput optimal case, since adding more buffers
can only increase the energy without any improvement in
throughput. In addition to the circuit implementation de-
tails, the number of slack-matching buffers for optimalE��

designs depends on the computation energy of the pipeline,
the energy of the buffers, and on �.

To optimize a pipeline for energy-efficiency, we min-
imize a design’s E�� value. E and � are functions of
the number of slack-matching buffers and � is fixed for
a given metric. To optimize for energy-efficiency we take
the derivative of E�� with respect to the number of slack-
matching buffers and calculate a local minimum. A global
E��-minimum can be obtained by choosing the smaller of
the local minimum and the throughput-optimal number of
slack-matching buffers.

We target the metric, E�2, because it is approximately
independent of the operating voltage, V [10]. Over tran-
sistor operating regions of interest to digital circuits, E is
proportional to V 2 and � is proportional to 1=V . So to first
approximation, E�2 will be independent of voltage. Thus
given two designs we can compare their energy efficiencies,
regardless of their individual operating voltages. For asyn-
chronous circuits, voltage independent metrics are desirable
so that a circuit will have a single metric value when the cir-
cuit is running at low voltages (for low power applications)
and at high voltages (for high performance applications).

Common energy-time metrics include the Power-delay
product (equivalent to E; � = 0) [2], the Energy-delay
product (equivalent to E� ; � = 1) [3], and MIPS/Watt
(equivalent to 1=E). The above metrics suffer because

1We restrict our attention to slack-elastic pipelines [5].
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they are not voltage independent and are too energy dom-
inated (� � 1), resulting in slow circuits. Nowka, Hofstee,
and Carpenter discuss more complicated energy-time mod-
els that account for subthreshold and velocity saturation ef-
fects, and show that E�2 is an appropriate approximation
for practical designs [12].

While we focus on fine-grained pipelines constructed
from QDI circuits using the synthesis methodology found
in [9], our approach is generally applicable to all pipelines
designed using asynchronous handshake circuits. We sim-
ply choose QDI circuits for ease of illustrating our analysis
of energy-efficient pipelines. Any other asynchronous cir-
cuit design style only changes the values obtained for E�2

and does not invalidate our conclusions. Our approach also
covers coarse-grained pipeline designs, although these de-
signs will have lower throughput and often lead to poorer
E�2 values.

Existing work in designing for joint energy-time met-
rics has either focused on high-level architectural optimiza-
tions [7, 14] or has been limited to the circuit level [2, 3, 12].
However, between these two extremes there is a large de-
gree of flexibility in choosing how to optimize for E��.
This is especially true in asynchronous systems, where log-
ical and physical pipelines are decoupled. Martin provides
anE�2 comparison between sequential and linear pipelines,
but does not address the slack-matching design problem
or consider more complex pipeline structures [11]. Our
goal is to provide insight into how to design asynchronous
pipelines that are energy efficient and use an energy-time
optimal number of slack-matching buffers.

This paper is organized as follows. Section 2 gives an
analytic framework that we use in the ensuing sections. In
Sections 3, 4, and 5 we analyze energy efficient solutions
for typical asynchronous pipeline topologies: ring, paral-
lel, and interleaved pipelines. Section 6 discusses compos-
ing E�2 pipelines and Section 7 presents an E�2 optimal
slack-matching solution for array accesses. In Section 8,
we discuss micro-architectural choices for designing an en-
ergy efficient exception handling mechanism. Concluding
remarks are in Section 9.

2. Pipeline Concepts

Much of the performance optimization notation and ter-
minology used in this paper is adopted from Lines [4]. We
define a token to be a data element in a pipeline stage, and a
hole to be the absence of a data element in a pipeline stage.
Tokens and holes travel in opposite directions through a
pipeline. In four-phase handshake circuits, tokens (and
holes) can be distributed across multiple pipeline stages.

The static slack of a pipeline, s, is the upper bound on the
difference between the number of communication cycles on
sender and receiver ends of a pipeline, and represents the

maximum number of tokens that a pipeline can hold. Static
slack is most easily implemented with buffers, which are
circuits that carry and propagate tokens. Two such classes
of QDI buffer circuits are described in [4]: half-buffers
which have a static slack of 1

2 and full-buffers which have a
static slack of 1. Dynamic slack, d, is the number of tokens
at which maximum steady-state throughput is achieved [4].
Williams defines dynamic wavelength to capture the notion
that a token can be spread over multiple pipeline stages [15].
When a pipeline operates at full steady-state throughput the
dynamic wavelength is the inverse of the dynamic slack.

The forward latency, lf , is the delay of a token travel-
ing forwards through a pipeline stage and the backward la-
tency, lb, is the delay of a hole traveling backwards through
a pipeline stage [15]. The forward and backward latencies
of a buffer determine its local cycle time, which is the time
between successive token receives on a buffer assuming it
is surrounded by an infinitely fast environment. The local
cycle time is an ideal time, and may never be achieved in
practice because of handshaking overheads when buffers
are connected together to form a pipeline. The pipeline cy-
cle time or simply cycle time, � , is the time between suc-
cessive token receives on a buffer stage in a pipeline. The
total forward latency of a pipeline is simply the sum of the
forward latencies for each stage, and total backward latency
is analogously defined. We define the steady-state through-
put as the throughput of a pipeline operating with a fixed
number of tokens. Steady-state throughput is useful for an-
alyzing the performance of pipelines where the number of
tokens is constant, such as in many closed systems, where
there is a cyclic dependency among pipeline stages.

The steady-state throughput of a linear pipeline can
be classified into a token-limited or hole-limited domain.2

Token-limited throughput is limited by the total forward la-
tency of a pipeline divided by the number of tokens. A
large, nearly empty pipeline ring with a single token racing
around is an example of token-limited operation because
the throughput is limited by how fast a single token can
move forward in the pipeline. Hole-limited throughput is
limited by the total backward latency divided by the num-
ber of holes. A large, nearly full pipeline ring with a single
hole is limited by how fast that hole can move backwards
around the pipeline. The token- and hole-limited domains
of throughput (as a function of the number of tokens) define
two lines, which form a triangle function, so the dynamic
slack of a linear pipeline is unique.3

The throughput-optimal number of tokens in a linear
pipeline is proportional to the dynamic slack of the pipeline

2Williams refers to these regions as “data-limited” and “bubble-
limited,” respectively.

3We will assume, for simplicity, that the local cycle time of a pipeline
stage does not limit the total pipeline throughput. In practice, the peak
of the triangular throughput function is deformed due to this second order
“handshake-limited” constraint [15].
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stage, r, which is equal to the forward latency over the lo-
cal cycle time for full-buffers.4 Typical values for r in QDI
full-buffer pipelines are between 1

8 and 1
4 . The dynamic

and static slacks of the pipeline are related by the equation
d = sr. Thus a linear pipeline, supporting k tokens, will re-
quire a total of k=r buffers to run at peak throughput. Slack
matching is the process of adjusting the slack of a pipeline
in order to optimize its throughput.5

In our analysis, we define a normalized static slack per
token, � = s=k, with 0 � k � s. We define the throughput
 as a function �, with peak throughput T [4]:

(�) =

(
T
�r

1 � �r
T (��1)
�(1�r) �r � 1

T = max
�

(�)

The domain where 1 � �r represents token-limited
throughput, and the domain where �r � 1 represents hole-
limited throughput. Figure 1 shows a contour plot of the
throughput  as a function of static slack s and the num-
ber of tokens k independently (from simple substitution of
� = s=k in (�)), and also shows profiles of the through-
put function for constant number of tokens k(s) and of
constant static slack s(k). The continuously differentiable
pieces of the throughput function under a constant num-
ber of tokens k(s) are inverse linear with respect to static
slack. Globally maximum throughput  = T occurs along
the entire ridge � = s=k = r.

Throughout this paper, we refer to the hole-limited re-
gion of the throughput function as +(�) and the token-
limited region as �(�). By definition, the throughput re-
gion that is increasing with respect to k is decreasing with
respect to s. In the energy-efficiency metric, E��, � is
the cycle time which is the reciprocal of throughput, so
�+(�) � 1

�(�) and ��(�) � 1
+(�) .

3. Rings of Pipeline Stages

Token rings appear in several places in concurrent VLSI
architectures. Examples of token rings include iterative di-
vider architectures [15] as well as data-dependent instruc-
tion execution and program counter computations [10].

A token ring consists of n concurrent pipeline stages
connected in a ring, with the output of process i connected
to the input of process (i+ 1) mod n. In this section we as-
sume each stage in the ring is an idealized half-buffer with
latencies lf and lb, and takes time 2lf + 2lb before it is

4For half-buffers, r is equal to twice the forward latency over the cycle
time.

5Slack matching applies more generally to all pipeline topologies and
not just linear pipelines [10].
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Figure 1. Throughput of a linear pipeline as a function
of static slack and number of tokens, and profiles of the
function for constant number of tokens and constant static
slack.

ready to accept the next input token.6 For a ring with k to-
kens constructed from half-buffer stages,7 the cycle time is
given by the expression

� =
n

k
max

�
lf ;

lb
n
2k � 1

�

and the optimal operating point occurs when n = k(2lf +
2lb)=lf [15]. At this choice of n, a data token moves around
the ring and back to the input of a computation stage just
when the stage is ready to accept its next input. Normally,
buffer stages are inserted into the ring to ensure that n is
equal to this optimal value. We now consider the impact of
taking energy into account for this optimization problem.

The total energy required will be proportional to the
amount of energy required by the stages that perform com-
putation plus the energy required by the additional buffer
stages. The total energy is given by Ef +nEb, where Ef is
the energy expended in functional computation, and Eb is
the energy required per buffer.

Since we are considering the case of adding buffer-
ing, we know that without any buffer stages n <
k(2lf + 2lb)=lf . If we minimize the expression (Ef +
nEb)((n=k)max(2lb=(n=k � 2); lf ))

� with respect to n,

6This time is a typical time and depends on the exact reshuffling of the
buffer stage [4].

7If full-buffers are used, � = n=kmax
�
lf ; lb=(n=k � 1)

�
.
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we obtain:

nopt = k(�+ 1)

 
1 +

s
1 +

2�(Ef=Eb)

(1 + �)2

!
:

If nopt satisfies constraint nopt < k(2lf + 2lb)=lf , then it
corresponds to the optimal E�� choice for the number of
stages in the ring.

In prior state-of-the-art QDI designs, (2lf + 2lb)=lf �
8 [10]. For our motivating metric of E�2, � = 2. The result
of our optimization will result in a different operating point
when nopt < k(2lf + 2lb)=f . Using the equation above,
this occurs just when Ef=Eb < 4. Therefore, if the total
energy required for computation is less than four times that
for a single stage of buffering, E�2-optimized rings will
have fewer number of stages than those optimized just for
performance.
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Figure 2. E�2 and � metrics for a ring of n QDI half-
buffers in 0.25�m CMOS (k = 1, Ef = 0).

Example: Consider a half-buffer token ring with k = 1
and Ef = 0. For the handshake reshuffling used in these
buffer circuits Eb � 2�12J , lf � 0:28ns, and lb � 0:64ns.
For � = 2, nopt = 6 and (2lf + 2lb)=lf � 7. Figure 2
shows HSPICE results for various sized rings designed in
a 0.25�m CMOS process (TSMC). A seven stage ring is
optimal for the � metric and a six stage ring is optimal for
the E�2 metric, confirming our analytical calculations. In
this example, with both rings running at the same voltage,
we can save 14% in energy consumption (by eliminating
one stage from the � -optimized ring) if we can tolerate a 3%
reduction in performance. However with voltage scaling,
and if the energy consumption of the six and seven stage
pipelines are equalized, the six stage design will actually
have a higher throughput because of its lower E�2 value
and hence is a better design than the seven stage ring.

4. Parallel Composition of Pipelines

The parallel composition of pipelines is a familiar struc-
ture in asynchronous architectures. They appear wher-

ever data or control tokens are sent or copied to multiple
processes, and re-synchronized at some later process. A
schematic representation is shown in Figure 3. In a typi-
cal processor the instruction decoder issues control tokens
to execution units and the register file which are then re-
synchronized at the writeback unit.

We are given the following characteristics of the two
buffer pipelines (that do not necessarily use the same types
of buffers): peak throughputs T , static slack s, dynamic
slack sr, and cycle energies per buffer E. We also as-
sume that the system operates at a steady-state, thus having
a constant number of tokens. The goal is to optimize the
static slacks per token, �a and �b, (and hence the number of
buffers) in both branches of a parallel composition of two
pipelines for a general energy-time metric.

copy

a

γb synchronize

γ

Figure 3. Schematic representation of two parallel
pipelines.

Optimizing for � . First we look at the throughput-
optimal solution to the parallel pipeline problem. For
fixed static slacks sa; sb, the parallel throughput k of two
pipelines is the functional minimum of the two individual
throughput functions, a(�a) and b(�b), assuming that the
throughput is not constrained by the environment or the
copy and synchronize processes.

k(�a; �b) = min(a(�a); b(�b))

Figure 4 illustrates a typical contour plot of a parallel
throughput function k(�a; �b) for Ta < Tb. The four
continuously differentiable regions of the function repre-
sent where the throughput is token- or hole-limited by the A
or B pipeline. The global maximum of throughput occurs
along ridge C at throughput Ta. The complete mathemati-
cal analysis can be found in the technical report by the same
authors [13].
Optimizing for E��. Using the E�� metric, our goal is

now to optimize the slack in the parallel pipeline for energy-
efficiency and speed. Like in the token-ring analysis, the
energy scales linearly with the number of buffers (or static
slack), plus some computational overhead. Without loss of
generality, we assume that the buffers are full-buffers,8 so
the number of buffers n = the static slack s = �k. We
choose to order the pipelines such that Ta � Tb; the solution
for Ta � Tb is symmetric. Since Ek is monotonically in-
creasing and continuously differentiable everywhere, Ek��k

8Whereas for half-buffers, n = 2s = 2�k.
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has the same piecewise differentiable boundaries as �k.

Ek(�a; �b) = Ef + �akEa + �bkEb

�k(�a; �b) = max

�
�a(1� ra)

(�a � 1)Ta
;
�b(1� rb)

(�b � 1)Tb

�

Since we are minimizingEk��k , we need not consider the
domains where cycle time increases with respect to static
slack �a; �b. For the domains where � is constant, we only
need to consider the lower bound on the static slack, be-
cause adding more slack will only increase the energy. Thus
we define the upper bound of the solution to be the intersec-
tion of ridges A;B;C in Figure 4. The global minimum
cycle time for Ta < Tb is found at:

�aopt = min (��a; 1=ra)

�bopt = min
�
��b ; (1� Ta(1� rb)=Tb)

�1
�

where the ��’s are the solutions for the static slacks where
the gradient, r(Ek�

�
k ) with respect to �a; �b, is zero. The

complete derivation of this solution can be found in the
technical report [13]. The solutions for the locally optimal
static slacks �� satisfy:

s�a = ��ak = u

 
1 +

r
1 + v

Ef + s�bEb

Ea

!

s�b = ��bk = u

 
1 +

r
1 + v

Ef + s�aEa

Eb

!

where u = (�+1)k
2 and v = 4�

(�+1)2k

This local minimum only depends on the relative ratios of
the energy constants, and not on the individual throughput
properties of the buffers, because the throughput parameters
factor out completely in the gradient. However, the global
minimum will still depend on these buffer parameters.

The solutions to the above coupled equations of s�a; s
�
b

that are of interest are the positive roots of a quartic polyno-
mial. For example, for Ef = 0, and equal energy buffers in
each pipeline Eb = Ea, we can deduce from symmetry that
s�a = s�b = s�. This simplified example is equivalent to the
analysis of a full-buffer token ring. The coupled system re-
duces to a single quadratic in s�, whose solution is in terms
of � and k:

s� = k(2�+ 1)

�� = 2�+ 1

For � = 2, a local minimum of E�2 occurs at s� = 5k,
or �� = 5. With identical buffers Ta = Tb and ra = rb,
the global minimum of E�2 occurs before the �� � 1=r
boundary only for r � 1=5. Otherwise, for r � 1=5, the
minimal E�2 occurs at the throughput-optimal boundary.

This general solution is still valid in the limiting ex-
tremes of the E�� metric. As � ! 1, minimizing the
metric becomes equivalent to or maximizing throughput.
Though the local minimum s�a(�) increases without bound,
the global minimum is still bounded by throughput-optimal
static slacks per token, which depend on buffer parameters
r; T . The global minimum of the metric will occur at the
throughput piecewise-differentiability boundary, and is in-
dependent of Ef ; Ea; Eb.

As � ! 0, the minimizing metric becomes equivalent
to minimizing energy. The local minimum of static slack
per token ��a and ��b approaches 1. This means that the
pipeline should have only the minimum amount of static
slack necessary to support operation, regardless of how slow
the pipeline operates, which is the only logical conclusion.

5. Interleaving Composition of Pipelines

Another common pipeline structure is to compose two
pipelines in parallel with a split-interleaver in place of the
copier, and a merge-interleaver in place of the synchronizer
in Figure 3. The interleaved pipeline structure could be used
in an application where duplicate execution units are avail-
able resources of a processing unit. An alternative to further
pipelining a particular datapath or execution unit is to dupli-
cate existing units, and having the instruction decoder dis-
patch control and data tokens alternately to one of several
identical execution units. This is particularly useful when
the execution units are expected to be highly occupied.
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Tokens that enter the split-interleaver are alternately
routed to two different pipelines, and a merge-interleaver
sequentializes tokens alternately from two incoming
pipelines. The analysis is similar to that of the parallel to-
ken pipelines in the previous section, only in the interleaved
case, the tokens in each pipeline are distinct. While here we
will only consider the case of two interleaved pipelines with
strict alternation, one could perform a similar analysis for a
larger collection of pipelines with different token distribu-
tions.

Given the same buffer characteristics E, T , and r (which
may be different for each pipeline), we want to find a
throughput-optimal relationship between sa and sb, for
steady-state operation at 2k tokens in the pipeline.

In an interleaved pipeline, the static slack is equal to
twice the static slack of the shorter pipeline. This is because
once the shorter pipeline is full, the split-interleaver cannot
issue any more tokens. The throughput of this system can be
no more than double the throughput of the slower pipeline,
since we can think of the tokens as being issued in pairs,
one token per pipeline, every cycle.

The interleaved throughput function of two interleaved
pipelines ./ has the same form as the parallel throughput
function k analyzed in Section 4, but with double the static
slack and double the peak throughput. Therefore the analy-
sis for 2k tokens in interleaved composition is the virtually
the same as for k tokens in parallel composition. This is a
close approximation since the difference in number of to-
kens in each pipeline in the interleaved case is bounded by
two instead of always being zero.

Given an equation for throughput, we now need the en-
ergy of the composition in order to evaluate different de-
signs for the general energy-time metric E��. Since the be-
havior of the interleaving pipelines can be modeled as pairs
of tokens in parallel, we can also use the same energy equa-
tions as for the parallel case.

Since the energy and time equations are the same, opti-
mizing interleaving pipelines for 2k tokens is equivalent to
optimizing parallel pipelines for k tokens. Therefore the op-
timal values for E�� are scaled versions of the results from
Section 4, but the optima occur at the same �’s.

6. Composing E� 2-Optimized Pipelines

Composing pipelines that have been independently op-
timized for E�2 requires careful consideration to avoid
degradation in the composed energy efficiency. While the
total energy of a composed system is the sum of each indi-
vidual pipeline, the composed cycle time depends on the
type of composition. If the cycle times of the individ-
ual pipelines are different then the composed cycle time
will degrade upon composition in the manner described by
Lines [4]. Any resulting degradation in the cycle time will

cause a degradation in E�2.
An analysis of the general composition problem where

different pipeline stages can operate at different voltages
can be found in [8]. For both pipelined and parallel compo-
sitions, the energy-time optimal composition occurs when
the cycle time of all pipeline stages are equal. This is intu-
itively obvious, because the cycle time is governed by the
slowest stage in the computation. In the case of sequential
composition, the time for the computation is the sum of the
times of the components. In this case, the optimal configu-
ration occurs when the E=� ratios for each component are
equal [8], i.e., the different components that are composed
require the same power.

If the operating voltage can be individually adjusted for
different pipelines then the cycle time can be equalized for
most pipelines of interest. Usually, however, the operat-
ing voltage is uniform across large sections of a design and
is difficult to locally adjust for individual pipelines both
in terms of distributing multiple power supplies and using
voltage conversion circuits at the interfaces.

In the following sections, we consider examples where
we compute the energy and cycle times for more complex
pipeline structures as functions of parameters that are then
chosen to optimize our energy-time metric.

7. 1D-Array Pipelines

One-dimensional register arrays are common in hard-
ware for computations and in memory circuits. One canon-
ical way of implementing an array of registers is to use bi-
nary trees of buffering split cells to address one element of
a particular array, and similar binary trees for routing data
into and out of the array. (Other designs may use larger N -
way splits and merges, or multidimensional arrays to reduce
depth.)

On a write access, data and address bits are concurrently
split along the binary route determined by the address bits,
such that one fewer address bit is used after each stage. The
writing throughput is only limited by the throughput of the
splits, therefore no slack-matching is necessary to improve
the throughput.

However on a read access, the control for a merge el-
ement arrives from the corresponding split element on the
address side, and is independent of the data width. With-
out additional slack, the first split could not accept an-
other token until the previous token completed at the last
merge, thus hindering throughput. If we assume each split,
merge, and register process has unit slack, then optimizing
the array read-access for throughput would require adding
buffers along the merge-control channels to equalize the
slack along all paths between the first split and the last
merge. Figure 5 shows a throughput-optimized array of
8 registers (b = 3). For an array of 2b elements, the to-
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Figure 5. Pipeline schematic of a binary tree 1D Array
for depth b=3, slack-matched for optimal throughput.

tal number of buffers in a throughput-optimized network,
Nbuf = 3(2b�1)�2b. This exponential number of buffers
needed makes slack-matching a 1D-array for throughput ex-
pensive in area.

To optimize E�� for the read-access of a 1D array, we
might expect that fewer buffers would be used in slack-
matching, to trade off throughput for energy (or area) sav-
ings. We assume that the array is operating at a fixed num-
ber of tokens k, so we can analyze the steady-state through-
put of the closed system. With full buffers, the total static
slack in the throughput-optimized array is 2b + 1, and the
dynamic slack is (2b+ 1)r.

Removing buffers from the pipelined array reduces the
static slack of the system to the minimum path slack, be-
cause the pipeline cannot hold more tokens than its short-
est pipeline path. Once one buffer is removed, this creates
one path that is shorter than all of the other buffer paths,
so subsequent buffers may be removed without further de-
creasing throughput, until all buffer paths again have equal
slack depth. In Figure 5, removing an entire layer of buffers
is the same as removing any one buffer from each horizon-
tal buffer path, if any remain in that path. It is convenient
to visualize removing a layer by deleting all buffers in the
pipeline column with the most buffers. It only makes sense
to start removing buffers from the leaf (innermost) level out,
for the greatest amount of energy savings per unit slack re-
moved.

Starting with a throughput-optimized array for (2b +
1)r > k, the system is operating at fewer tokens than the
dynamic slack, thus the throughput of the system is token-
limited. Removing buffers will not decrease the system
throughput because it is limited by the forward latency of
the longest path in the pipeline, which is that of the split-
register-merge network. Without sacrificing throughput, en-

ergy is reduced by removing levels of buffers from the leaf-
level out, until the slack of the shortest path is equal to the
throughput-optimal slack.

From the case where (2b+1)r = k, we want to minimize
E�� by removing layers of buffers. The throughput will
be a function of the system’s static slack per token � =
2b+1�v

k
, where v is the number of buffer layers removed

from the throughput-optimal system. We define n[v] as the
number of buffers used per token. The new throughput is
hole-limited because the dynamic slack of the pipeline will
be less than the number of tokens.

Using an analysis similar to that of the token rings, we
define the total energy per token E(v), and throughput �(v)
as a function of the number of buffer levels removed. The
total number of buffers in the array and the buffers used per
token n[v] are summarized for the first few values of v in
Table 1.

For analysis purposes, we may choose to use a close ap-
proximation function in place of n[v], n(v) = (b � v=2)2,
which exact for v even, only off by 1=4 for v odd. The
“computation energy overhead” Ef is the amount of en-
ergy in the split-register-merge network of the 1d array in
terms of energies per bit Esplit; Eregister, and Emerge. Ef

depends on the depth of the array b, and data width w.
The number of splits used per token is quadratic in b be-
cause the ith stage of the address split network must split
the b � i other bits to the i + 1 level. Since splits, regis-
ters, and merges can be constructed from slightly modified
buffers [4], we approximate their energies per bit Es;r;m to
that of a buffer Eb, so Ef=Eb � b2=2+b(w�1=2)+1. We
ignore the overhead energy required to copy and amplify
signals.

E(v) = Ef + Ebn[v]

� Ef + Eb(b� v=2)2

Ef =
1

2
b(b� 1)Esplit + Ereg + bwEmerge

�
�
b2=2 + b(w � 1=2) + 1

�
Es;r;m

�(v) =
(s� v)(1� r)

T (s� v � k)

s = 2b+ 1

Using n(v), the minimum of E�� occurs at:

(2b� v)(s� v � k)(s� v) = �k

�
Ef

Eb

+
�
b�

v

2

�2�

We verify that this solution makes sense in the limit as
�! 0, and as �!1. As �! 0, the metric is dependent
on only energy.

0 = �(2b� v)(s� v � k)(s� v)

v� = min(2b; s� k; s)

= s� k = 2b+ 1� k
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v total buffers Nbuf n[v]

0 3(2b � 1)� 2b b2

1 2(2b � b� 1) b2 � b

2 3(2b�1
� 1)� 2(b� 1) (b� 1)2

3 2(2b�1
� (b� 1)� 1) (b� 1)2 � (b� 1)

4 3(2b�2
� 1)� 2(b� 2) (b� 2)2

Table 1. Total number of buffers in array and num-
ber of buffers used per token for each level of buffers re-
moved. v = 0 corresponds to the throughput-optimized
array pipeline.

For any number of tokens k � 1, s� k = 2b+ 1� k �
2b, which means that all buffer levels should be removed
to minimize energy, which reverts back to the un-buffered
design. As � ! 1, the metric depends only on the cycle
time.

0 = �k
�
Ef=Eb + (b� v=2)2

�
0 =

�
b2=2 + b(w � 1=2) + 1

�
+ (b� v=2)2

This quadratic is always positive and thus, has no real
roots. On the domain v 2 [0; s � k], the cycle time � is
monotonically increasing because the pipeline is operating
in the backward latency limited region, therefore � is mini-
mal on the boundary, v = 0, where no buffers are removed.

For all other intermediate �, we are interested in only the
positive roots of v of the cubic equation that lie in [0; s�k].
Table 2 provides a list of roots of the above polynomial for
� = 2, and several values of b; k; w. All negative roots
are reported as “< 0”, which implies that no buffers should
be removed, i.e. the � - and E�2-optimal solutions are the
same. In practice, one would check the E�2 above and be-
low the non-integer solutions and choose whichever yielded
the minimum.

From this table we see some interesting results. As the
data width increases, the merge-energy term of the energy
overhead increases proportionally. With larger overhead en-
ergy, the optimal number of buffer levels to remove de-
creases. For a 1D array of 32 32-bit registers running at
2-token occupancy (w = 32; b = 5; k = 2), v� = :80,
which means only the single innermost level of buffers is
removed to minimize E�2.

8. Energy-Efficient Exception Design

In previous sections we discussed finding the E�2-
optimal number of slack-matching buffers for a given
pipeline topology. An important and more general opti-
mization problem is to determine the E�2-optimal number
of slack-matching buffers for a design without restricting
its pipeline topology. To illustrate this concept we choose

v�: E�2-optimal number of buffer levels to remove
from � -optimal slack-matched 1D array of registers

depth number of tokens k in steady state
b 1 2 3 4 5

data width w = 8
2 0.85 < 0 < 0 < 0 < 0
3 2.33 0.75 < 0 < 0 < 0
4 3.89 2.20 0.76 < 0 < 0
5 5.49 3.70 2.20 0.82 < 0
6 7.12 5.24 3.69 2.28 0.92
7 8.78 6.82 5.21 3.75 2.37
8 10.45 8.41 6.76 5.26 3.86

data width w = 32
2 < 0 < 0 < 0 < 0 < 0
3 0.31 < 0 < 0 < 0 < 0
4 1.70 < 0 < 0 < 0 < 0
5 3.17 0.80 < 0 < 0 < 0
6 4.70 2.21 0.27 < 0 < 0
7 6.27 3.67 1.65 < 0 < 0
8 7.87 5.18 3.09 1.28 < 0

Table 2. Values of v� for several array sizes b, data widths
w, and number of tokens k, at which E�2 is minimal. The
system static slack is s� v� = 2b+ 1� v�.

a practical example of designing an energy-efficient excep-
tion mechanism for pipelined processors. We derive energy
equations for various exception handling pipeline topolo-
gies and discuss how they compare with the E�2 metric.

result

epc queue

IF WB

instruction
EX

Figure 6. Processor with EPC queue.

In a typical microprocessor design, implementation of
precise exceptions is handled by the writeback (WB) unit.
An exception may be generated by the instruction fetch (IF),
an execution unit (EX) or an external interrupt. When an ex-
ception occurs, the writeback unit notifies the fetch loop to
stop fetching new instructions and branch to the exception
handler. The writeback unit needs access to the program
counter value which raised the exception (hereafter referred
to as the EPC). This EPC value is stored until the exception
handler has finished and then execution resumes at the EPC
value. As shown in Figure 6, the fetch sends the EPC value
to the writeback for each instruction that it issues. In the
MiniMIPS, this is implemented as a linear FIFO queue that
contains the EPCs of all instructions that are currently exe-
cuting within the processor [6]. Because an EPC value will
be sent on every cycle, this FIFO must be slack-matched
with the execution pipeline to run at full throughput.
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The average number of tokens, k, in the EPC queue is
equivalent to the number of outstanding (non-retired) in-
structions executing in the processor. For pipelined pro-
cessors, the number of full-buffers (k

r
) required to slack-

match the EPC queue for k tokens can be a significant en-
ergy waste (with r as defined in Section 2). For EPC values
w bits wide, an EPC queue constructed from full-buffers
will have an energy given by the expression

E1 = (w)
k

r
Eb

where Eb is the buffer energy per bit of a FIFO stage.

epc array

epc

index ack channel (dataless)

epc index queue (log2k bits)

WBIF

EX
instruction result

Figure 7. Processor with EPC index queue and EPC array.

EPC index queue. We observe that, though the write-
back must receive some information from the fetch on every
cycle, the writeback only needs the actual EPC value when
exceptions occur (a rare event!). For a more energy efficient
design (Figure 7) we eliminate sending the entire EPC on
every cycle. Instead we store the EPC value in an array and
send an index9 into this array through a slack-matched FIFO
to the writeback [13]. The size of this array determines the
maximum number of outstanding instructions. To support
an average of k outstanding instructions, we will assume the
array is of size 2k and the index is log2(2k) bits wide.

Before an entry in the EPC array can be overwritten, the
fetch unit must know that the EPC value in the entry has
been safely retired and that no exception has been raised.
For this reason an acknowledge channel to the EPC array is
added so the writeback unit can signal that it has retired an
instruction. Since EPCs are sent from the fetch and retired
by the writeback in program order, the acknowledge chan-
nel does not need to carry any data beyond the acknowledg-
ment itself.

It is important that sending EPC array indices from the
fetch unit, and the receipt of acknowledgments from the
writeback are decoupled processes. This means that the
fetch unit can write EPCs into the array, while an indepen-
dent process receives acknowledgments from the writeback

9A more aggressive design can eliminate sending this index entirely
by keeping a duplicate array index counter in the WB, and the EPC index
queue would then turn into a dataless channel.

and then marks the EPC entries that have been retired. To
accommodate this, the EPC array must include a extra valid
bit in every entry that indicates whether the stored EPC has
been retired by the writeback. The array must also be dual
ported to allow it to be simultaneously accessed by the two
processes. If the index send and acknowledge receive were
linked, the index queue and index acknowledge channel
would form a ring. This means the total number of tokens
in the ring would be fixed. Since the number of instructions
that are “in flight” in the processor can vary, we want the
number of EPCs indices in the FIFO to be flexible as well.
Additionally, if the EPC index FIFO and the acknowledge
FIFO form a ring then the acknowledge FIFO would need
to be slack-matched for the same number of tokens as the
index queue (greatly increasing the energy overhead). In
the decoupled scheme there is only minimal energy over-
head since the acknowledge channel needs only to be slack-
matched for a single token.

The total energy of the EPC index queue design, E2, is
the sum of the energy in the EPC index queue (EIndex),
the acknowledge queue (EAck), the EPC array (EArray)
and the energy required to maintain pointers into the array
(EPointers).

E2 = EIndex + EAck + EArray + EPointers

EArray = (w + 2 log2(2k))(log2(2k))Es

+(w + 2)Er

EIndex = (log2(2k))
k

r
Eb

EAck =
1

r
Eb

EPointers = 2 log2(2k)Ecntbit

We do not consider the energy required to read an EPC ar-
ray entry because this occurs rarely, only after an exception
happens. EIndex and EAck are computed in a similar man-
ner as our previous computation of E1. EPointers is the
energy of the number of bits required to encode the two ar-
ray pointers, where Ecntbit is the counter energy per bit. On
each cycle (in steady-state) there will be two accesses to the
array.10 Both accesses must go through log2(2k) stages of
splits (Es is the split energy per bit) and write into the ar-
ray (Er is the array write energy per bit). When the fetch
unit writes the EPC into the array, it sends both EPC (width
w) and the index (width log2(2k)) along the split network
mentioned above. The acknowledge channel, however, only
sends the index (width log2(2k)) when it accesses the array.
The fetch unit writes the EPC (w bits wide) and the valid bit,
whereas the acknowledge channel only writes the valid bit
into the array.

10The array is implemented such that the EPC data values do not move
and so no passive energy is consumed.
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Since the designs above are both slack-matched iden-
tically along their critical paths, they will have identical
throughputs. The design with the optimal E�� will then be
the one with the lower energy. The condition for E1 > E2

is given by the inequality:

w >
2 log2(4k)Es + EIndex + EAck + EPointers + 2Er

k
r
Eb � log2(2k)Es � Er

If we make the approximation that the energies per bit are
equal, then Figure 8 shows that the above inequality is vir-
tually constant for reasonable values of k. Thus for large
EPC bit-widths (w > 8), the EPC index array design will
use less energy and have a lowerE�2 value than the original
EPC queue design.

15

E3=E4
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5 10
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Figure 8. Bit-width of EPC (w) versus tokens (k) for
E1 = E2 and E3 = E4 (assuming the energies/bit are
equal and r = 0:25).

Effect of other FIFO styles. Here we examine the en-
ergy efficiency of replacing the linear FIFOs of the previ-
ous designs with binary tree FIFOs. We adopt the binary
tree FIFO description and analysis introduced by Lines [4].
A “binary tree FIFO” is constructed by recursively com-
posing split-interleavers at the input to the FIFO, placing
FIFOs at each leaf of the tree, and then using a comple-
mentary merge-interleaver tree for the output of the FIFO.
The latency of this FIFO design is proportional to the log
of the total static slack. Since binary tree FIFOs require
fewer slack-matching buffers than linear FIFOs to run at
full throughput, designs using tree FIFOs may have lower
E�2 values.

We assume our tree FIFOs, as shown in Figure 9, are
composed of two levels of binary splits, which feed four
parallel internal FIFOs, followed by two levels of binary
merges. It is also assumed that if a linear FIFO supports an
average of k tokens, the equivalent tree FIFO should sup-
port a maximum of 2k tokens at full throughput. It can be
shown that a binary tree FIFO supporting 2k tokens at full
throughput will require n total buffers for its internal FIFO

m

m

m

s mbufferinterleaver
split

interleaver
merge

s

s

s

Figure 9. Binary tree FIFO topology.

stages, where n is given by the expression: [13].

n = 4d
4(k � 3r � 4)

r + 7
e:

The energy, E3, for a design that uses a tree FIFO instead
of a linear EPC queue FIFO is

E3 = w(2Es + 2Em + d
4(k � 3r � 4)

r + 7
eEb);

where Es is the split energy per bit, Em is the merge energy
per bit, and Eb is the buffer energy per bit.

If we replace the linear index queue with a binary tree
FIFO in the array EPC design, the energy of the modified
design, E4, will be equivalent to E2 with the following
modification to EIndex:

EIndex = (log2(2k))(2Es + 2Em + d
4(k � 3r � 4)

r + 7
eEb)

Since both of the designs (E3 and E4) which use tree FI-
FOs will have identical throughputs, we need only compare
their energies to determine their relative energy efficiency.
The condition for E3 > E4 is given by the inequality:

w >
2 log2(4k)Es + EIndex + EAck + EPointers + 2Er

(2Es + 2Em + d 4(k�3r�4)
r+7 eEb)� log2(2k)Es � Er

Again if we make the assumption that the energies per bit
are equal, then the above equation depends strongly on the
values of w and k. As shown in Figure 8, if the number
of tokens is large enough (k > 10) the inequality will hold
for normal EPC bit-widths (w = 32). So when binary tree
FIFOs are used, the EPC queue design (E3) will be more
energy efficient than the EPC index array design (E4), for
small numbers of tokens (k � 10).

Because the cycle time of the processor in all of these
designs is fixed and determined by the IF to EX to WB
pipeline, the E�2 values for the designs are proportional
to their energies. Figure 10 shows an energy summary of
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the four designs presented in this section. We make the as-
sumption that the cell energies per bit are approximately
equal. From this figure we can see that the designs using
the EPC array index technique (E2, E4) require less energy
than the EPC FIFO queue designs (E1, E3). As expected
the designs using binary tree FIFOs (E3, E4) use less en-
ergy than the linear FIFO designs (E1, E2), since they have
fewer slack-matching buffers. In practice, a more detailed
circuit analysis may be required to determine the best ex-
ception handling design, especially if the number of tokens
(k) is small.

9. Summary

Starting with a model for the steady-state throughput
behavior of an asnychronous buffer, we constructed E��-
optimal analytic solutions for a number of asynchronous
pipelines, and defined conditions when slack-matching
buffers may be removed to improve energy efficiency.
We also showed an example of micro-architectural design
choices that can be used to reduce the number of slack-
matching buffers in pipelined systems.

With a small set of simplifying assumptions, we have
outlined a practical method of pipelining asynchronous cir-
cuits for a general energy-time metric. To design arbitrary
energy efficient pipelines, we began with a system that has
been slack-matched for throughput and remove (if possi-
ble) slack-matching buffers until E�� is minimized. This
energy-time optimization approach, via varying the num-
ber of slack-matching buffers, provides the asynchronous
designer with a tractable method for designing energy effi-
cient pipelines.
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