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Abstract—The grand challenge of neuromorphic computation
is to develop a flexible brain-like architecture capable of a
wide array of real-time applications, while striving towards the
ultra-low power consumption and compact size of biological
neural systems. To this end, we fabricated a key building block
of a modular neuromorphic architecture, a neurosynaptic core.
Our implementation consists of 256 integrate-and-fire neurons
and a 1,024×256 SRAM crossbar memory for synapses that
fits in 4.2mm2 using a 45nm SOI process and consumes just
45pJ per spike. The core is fully configurable in terms of
neuron parameters, axon types, and synapse states and its fully
digital implementation achieves one-to-one correspondence with
software simulation models. One-to-one correspondence allows us
to introduce an abstract neural programming model for our chip, a
contract guaranteeing that any application developed in software
functions identically in hardware. This contract allows us to
rapidly test and map applications from control, machine vision,
and classification. To demonstrate, we present four test cases (i)
a robot driving in a virtual environment, (ii) the classic game
of pong, (iii) visual digit recognition and (iv) an autoassociative
memory.

I. INTRODUCTION

Custom neuromorphic chips have steadily marched towards
the goal of matching the incredible power efficiency and scale
of biological neural systems [1], [2], [3]. Despite advances on
the hardware front, there has been little progress to using these
chips for real-world applications. One of the main obstacles
holding back the wide spread utility of low-power neuro-
morphic chips is the lack of a consistent software–hardware
neural programming model, where neuron parameters and
connections can be learned off-line to perform a task in
software with a guarantee that the same task will run on power-
efficient hardware.

In this paper, we present a digital neurosynaptic core that
by design has a functional specification that can be simulated
in any software environment. Our core incorporates central
elements from neuroscience, including 256 leaky integrate-
and-fire neurons, 1024 axons, and 256×1024 synapses. During
operation, the core runs a discrete event simulation, and for
each time step the activity in terms of spikes per neuron,
neuron state, etc. is identical to the equivalent property of
a corresponding software simulation. This one-to-one corre-
spondence allows algorithm development to proceed without
hardware in hand, enabling parallel algorithm and hardware

progress. In contrast, approaches that use dense analog cir-
cuits to model neural components do not maintain one-to-one
correspondence between hardware and software, due to device
mismatch and statistical fluctuations (e.g., changes in ambient
temperature) [4].

Given that our digital hardware is equivalent to a software
model, one can ask: why not take the software model itself and
translate it into hardware directly using either conventional or
commodity computational substrates? Running the software
specification on conventional supercomputers is out of the
question due to high power consumption [5]. Commodity
chips, which include DSP [6], GPU [7], and FPGA [8]
solutions, also lead to relatively high power that limits scal-
ing. Specifically, these solutions require high-bandwidth to
communicate spikes from separately located processing and
memory, and to meet real-time performance clock speeds are
typically run in the gigahertz range. In contrast, we implement
fanout by integrating crossbar memory with neurons to keep
data movement local, and use an asynchronous event-driven
design where each circuit evaluates in parallel and without
any clock, dissipating power only when performing useful
computation. These architectural choices result in a core that
implements a family of parameterized spatiotemporal func-
tions in a naturally power constrained manner, where power
grows linearly with activity. In practice, our prototype chip
fabricated in a 45nm SOI process consumes just 45pJ of active
power per spike [9].

To demonstrate our approach, we implement four neural
applications that were first developed in software and subse-
quently mapped to the neurosynaptic core.

II. ARCHITECTURE

The basic building blocks of our neurosynaptic core are
axons, synapses, and neurons (Fig. 1(a)). Within the core,
information from the axons is modulated by the synapses as
it flows to the neurons. The structure of the core consists of
K = 1024 axons that connect via K×N binary-valued synapses
to N = 256 neurons. We denote the connection between axon
j and neuron i as Wji.

The dynamics of the core are updated at a discrete time
step, ∆t. Let t denote the index of the current time step,
where t has units of milliseconds (i.e., ∆t = 1ms). Each axon



corresponds to a neuron’s output that could either reside on the
core or somewhere else in a larger system with many cores. At
each time step t, each axon j is presented with an activity bit
Aj(t) that represents whether its corresponding neuron fired
in the previous time step (Aj(t) = 1) or not (Aj(t) = 0).
Axon j is statically designated as one of three types Gj ,
which assumes a value of 0, 1, or 2; these types are used
to differentiate connections (e.g., excitatory or inhibitory) with
different efficacies. Correspondingly, neuron i weighs synaptic
input from axon j of type Gj ∈ {0, 1, 2} as SGj

i . Thus, neuron
i receives the following input from axon j:

Aj(t)×Wji × S
Gj

i . (1)

For our neurons, we use a single compartment, leaky
integrate-and-fire model parameterized by its leak L,
threshold θ, and three synaptic values S0, S1, S2 that
correspond to the different axon types. The membrane
potential V (t) of neuron i is updated in each time step as

Vi(t+ 1) = Vi(t) + Li +

K∑
j=1

[
Aj(t)×Wji × S

Gj

i

]
. (2)

When Vi(t) exceeds its threshold θi, the neuron produces
a spike and its potential is reset to 0. Negative membrane
potentials are also clipped back to 0 at the end of each time
step.

III. IMPLEMENTATION

The block-level implementation of our neurosynaptic core
consists of an input decoder with 1024 axon circuits, a
1024 × 256 SRAM crossbar, 256 neurons, and an output
encoder (Fig. 1(b)). Communication at the input and output of
the core uses an address-event representation (AER), which
encodes binary activity, such as A(t), by sending the locations
of active elements via a multiplexed channel [10]. In order
to minimize active power consumption, we perform neural
updates in an event-driven manner. Specifically, we followed
an asynchronous design style, where every block performs
request-acknowledge handshakes to perform quasi-delay in-
sensitive communication ( without a clock) [11].

The detailed operation of the core in a discrete time step
commences in two phases: the first phase implements the
axon-driven component, and the second phase implements a
time step synchronization. In the first phase, address-events
are sent to the core one at a time, and these events are
sequentially decoded to the appropriate axon block (e.g., axon
3 from Fig. 1(b)). On receiving an event, the axon activates the
SRAM’s row, which reads out all of the axon’s connections
as well as its type. All the connections that exist (all the 1’s)
are then sent to their respective neurons, which perform the
appropriate membrane potential updates; the 0’s are ignored.
After the completion of all the neuron updates, the axon
block de-asserts its read, and is ready to process the next
incoming address event; this sequence repeats until all address
events for the current time step are serviced. In the second

phase, which occurs once every millisecond, a synchronization
event (Sync) is sent to all the neurons. On receiving this
synchronization, each neuron checks to see if its membrane
potential is above threshold, and if so, it produces a spike and
resets the membrane potential to 0; these spikes are encoded
and sent off as address events in a sequential fashion. After
checking for a spike, the leak is applied.

The purpose of breaking neural updates into two phases
is to ensure that the hardware and software are always in
lock step at the end of each time step. Specifically, the order
in which address events arrive to the core or exit the core
can vary from chip to chip due to resource arbitration—
especially when events are sent through a non-deterministic
routing network. To remain one-to-one, the different orderings
must not influence the spiking dynamics. We achieve one-to-
one equivalence by first accounting for all the axon inputs,
and then checking for spikes after these inputs have been
processed. This also gives us a precise bound for operating in
real time: all address events must be accounted for before the
synchronization event, which we trigger once per millisecond.

Our core was fabricated in a 45nm SOI process, and has 3.8
million transistors in 4.2mm2 of silicon (Fig. 1(c), left), and
consumes just 45pJ per spike at Vdd = 0.85V. To test our chip,
we built a custom printed circuit board that interfaces with a
PC through a USB link (Fig. 1(c), right). Through this link,
we can interface our chip to virtual and real environments via
address event communication, as well as configure neuron–
synapse parameters via a shift-register scanner (not shown).

IV. NEURAL PROGRAMMING MODEL

A bedrock of modern computing is the idea that a software
program will execute repeatably and deterministically on any
compatible hardware platform. This basic contract between
software and hardware developers, referred to as an abstract
programming model, has paved the way for specialization
in both domains, allowing software engineers to focus on
algorithmic development while hardware engineers tackle per-
formance. We apply this principle and introduce a neural
programming model for our neurosynaptic core.

The closest equivalent to a program for our core is the state
of neural parameters, which determines the core’s dynamics
in response to inputs given its initial conditions. Specifically,
each core has 2256×1024 synapse configurations (W ), 31024

axon type configurations (G), and 29×5×256 neuron state
configurations (S0, S1, S2, L, θ). The challenge is to find a
configuration in this enormous space that results in a desired
function.

Our process for programming the neurosynaptic core is as
follows: Given a particular task, such as a recognition or
sensory-motor control problem, the task must first be framed
in the context of a spiking neural network. The first step is
to assign each neuron to a particular function; where some
possible functions include feature detection, memory, sensory
input, and motor output. Next, connections and parameters for
each of the different neuron types need to be determined. In
the simplest case, these parameters can be hand-specified when
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Fig. 1. (a) The core consists of axons, represented as rows; dendrites, represented as columns; synapses, represented as row–column junctions; and neurons
that receive inputs from dendrites. The parameters that describe the core have integer ranges as indicated. (b) Internal blocks of the core include axons (A),
crossbar synapses implemented with SRAM, axon types (G), and neurons (N). An incoming address event activates axon 3 (A3), which reads out that axon’s
connections, and results in updates for neurons N1, N3 and NM. (c) left Neurosynaptic die measure 2mm × 3mm including the I/O pads. right Test board
that interfaces with the chip via a USB 2.0 link. Spike events are sent to a PC for data collection, and are also routed back to the chip to implement recurrent
connectivity.

the function is straightforward. For more complex functions,
the parameters need to be learned offline, typically through
an optimization procedure on a representative dataset from
a real or virtual environment. Finally, these parameters are
transformed into a hardware-compatible format, where they
can be downloaded to the hardware platform and tested in
real-time.

To demonstrate our neural programming framework, we
describe four example applications that have been mapped
to our hardware in the following subsections. Results were
collected from our custom chip via the PC-USB interface,
while using the host PC for graphics display, user interface,
and supporting software as necessary. We also verified for a
number of test cases that each application operated exactly as
predicted by the software model. Detailed information on the
specific parameter values used for each example can be found
in the appendix.

A. Autonomous Virtual Robot Driver

For our first application, we programmed the neurosynaptic
core to steer a simulated robot around a virtual racetrack. The
goal of the robot driver application is to keep the robot on the

racetrack using an autonomous, closed-loop control system.
The virtual robot is a physics based emulation of the real-
life MobileRobots Pioneer 3-AT (P3AT), a four wheel drive
robotic platform with a vision sensor. We defined a clover-
shaped racetrack in the Unreal Tournament 3 virtual environ-
ment. The autonomous control system receives visual input
from its camera, and controls the robot by issuing differential
wheel speed commands to the left and right wheels. Fig. 2(a)
shows screenshots of the view seen by the robot camera and
the robot on the racetrack in the virtual environment.

Controlling the P3AT robot in the virtual environment
requires two key components: vision to see the racetrack and
a control system to direct the robot’s actions. In the virtual
environment, we simplified the vision task of detecting the
road by performing preprocessing on the host computer, and
focused on implementing the control system on the hardware.

We program the neurosynaptic core to implement a negative
proportional feedback controller in which difference in power
applied to the left and right wheels is proportional to the
difference in the P3AT’s direction of travel and the direction
to the center of the road (in visual space). Therefore, when the
P3AT drives down the center of the road both wheels receive
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Fig. 2. (a) Screenshots of the robot-eye view in the virtual environment at top and the simulated P3AT robot on the racetrack at bottom. (b) Autonomous
robot control system block diagram. (c) top Spike activity of network during driving task. bottom Average distance from center of driving track, as a function
of the number of neurons used where distance saturates at 2.0 in failed trials.

equal power. The system is a self-contained closed loop, and a
block diagram is shown in Fig. 2(b). Vision processing consists
of a layer of “On” feature detectors that spike when the road is
within their receptive field. Note that this feature layer could
be augmented with many other features (e.g., “Off” features,
edges, road color statistics, etc.) for a more complex visual
processing system, which would be necessary in more realistic
environments. The neurons in the sensory layer, which reside
in the neurosynaptic core, are driven from these feature layer
detectors to essentially form road detectors that represent the
position of the road in the visual field. The motor command
processing block integrates the spiking output from the sensory
layer and produces two values, one for both of the left and
right wheels to steer the robot. The power to each wheel is
proportional to the number of spikes on each side of the visual
field; therefore, if the road is left of center the left wheel
receives greater power, causing a turn to the left, centering
the position of the road in the visual scene.

We program the neurosynaptic core as follows, mapping the
sensory neuron layer to the hardware. There are 512 “On”-
features, which are mapped to 1024 axons, half excitatory and
half inhibitory. The 256 neurons are then divided up across
the visual field, centered at uniform intervals and each taking
input from 32 excitatory and 16 inhibitory axons. The road
detectors are excitatory in the center (S0 = +2), inhibitory on
the edges (S1 = −2), and zero elsewhere, forming a matched
filter that fires maximally when the road is centered in the
filter’s receptive field.

We measured the robustness of our neural controller by
varying the fraction of neurons enabled(from 10 to 100%)
and tracking the average distance the robot deviated from the
center of the track (Fig. 2c). Using 100% of the neurons,
the performance is near perfect (low mean-squared error), and
degrades smoothly with decreasing percentage of neurons.

B. Pong Player

For our second example, we simulated the classic video
game of Pong and implemented an autonomous player that is
controlled by the neurosynaptic core. The goal of Pong is to
keep a moving ball contained in a 2D box, where one wall
of the box is open such that the ball must be hit by a paddle
controlled by a player. To make the game more challenging
the direction of the ball is randomly perturbed when it bounces
off the wall opposite to the paddle. Because the ball moves
faster than the paddle, the challenge for the player is to predict
the correct paddle position far enough in advance.

To implement an autonomous player, the neural network
interacts with the game the same way a normal player would,
through visual access to the ball’s position and a 1D paddle
controller but without access to precise ball position, velocity,
and kinematics that virtual players typically have. The playing
area is divided into a 16 × 14 grid corresponding to visual
receptive fields of 224 neurons that are direction selective,
spiking only when the ball moves towards the virtual player’s
side of the field (loosely based on the fly visual system [12]).
For paddle-control, we assign 14 motor neurons to control
a joystick (inertial controller), which moves the paddle’s
location toward the position of the most active motor neuron.

We implement the player with a spiking neural network
using three subsystems: sensory, reset, and motor. The function
of the sensory neurons is to store the ball’s trajectory as a trace
of neural activity (Fig. 3(b-c)). Specifically, sensory neurons
become active when the ball moves across the game area,
and remain active without external input via excitatory self-
connections (autapses). To reset the persistent activity between
volleys, the sensory neurons receive strong inhibition from
an interneuron when the ball reaches the paddle, and the
sensory neurons remain inhibited until the ball reaches the
bottom row of the playing area (shutoff by a second inhibitory
interneuron).

Finally, to associate ball trajectories with the appropriate



0 0.1 0.2 0.3 0.4 0.5
0.7

0.75

0.8

0.85

0.9

0.95

1

 ∆V − velocity increments

Pe
rf

or
m

an
ce

 

 

a b

 

 

 

 

 

 

paddle side 

sensory neurons c

d

Fig. 3. (a) Schema of the underlying architecture of the network. Excitatory connections are red, inhibitory connections are blue, and autapses are black.
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red arrow indicates the paddle’s initial and final position. (c) Three examples of the neural player after training. (d) Performance of the system measured as
the percentage of hits as a function of increasing ball velocity. The data points are fit by a cubic line.

motor neuron activations, we used an offline supervised learn-
ing algorithm to learn the sensory to motor neuron connec-
tions. Specifically, the connections were updated according to
a perceptron update algorithm conditioned to maximal sta-
bility [13] based on training examples of ball trajectories and
desired motor outputs (a teacher signal). Through this training,
the network learned to recognize trajectories and their associ-
ated endpoints rather than computing the ball’s kinematics. To
transform the real-valued weights into a hardware-compatible
format, the synapse strengths for each motor neuron were
truncated to the closest of the means of a trivariate Gaussian
fit (since neurons are restricted to three synapse types). With
this mapping, the player performance is perfect for slow ball
velocities, and degrades as the speed increases (Fig. 3(d)).
Qualitatively, the learned strategy resembles a human strategy,
since the motor neurons move the paddle in the vicinity of
the correct position early in the ball’s trajectory (i.e., coarse
prediction), and continually refines its prediction as the ball
approaches.

C. Visual Digit Recognition

Our third application was to classify handwritten numeric
digits from the MNIST dataset [14]. The MNIST dataset
contains 70,000 example images of the handwritten digits 0
through 9. Each 22x22 pixel image has been segmented into
binary (black or white) pixels. The challenge of this task is
to accurately recognize the digits in spite of the significant
variation between writing styles and handwritten instances.

We approached this task using a Restricted Boltzmann
Machine (RBM), a well-known algorithm for classification
and inference tasks. Specifically, we trained a two-layer RBM
offline with 484 visible units and 256 hidden units on hand-
written digits from the MNIST dataset. Our learning proce-
dure followed directly from [15]; briefly, we use contrastive
divergence to learn 484× 256 real-valued weights to capture

the probability distribution of pixel correlations in the digits
(60,000 images). After learning these weights, we trained 10
linear classifiers on the outputs of the hidden units using
supervised learning. Finally, we test how well the network
classifies digits on out-of-sample data (10,000 images), and
achieved 94% accuracy.

To map the RBM onto our neurosynaptic core, we make
the following choices: First, we represent the 256 hidden units
with our integrate-and-fire neurons. Next, we represent each
visible unit using two axons, one for positive (excitatory) con-
nections and the other for negative (inhibitory) connections,
accounting for 968 of 1024 axons. Then we cast the 484×256
real-valued weight matrix into two 484×256 binary matrices,
one representing the positive connections (taking the highest
15% of the positive weights), and the other representing the
negative connections (taking the lowest 15% of the weights).
Finally, the synaptic values and thresholds of each neuron were
adjusted to normalize the sum total input in the real-valued
case with the sum total input of the binary case.

Following the example from [16], we are able to imple-
ment the RBM using spiking neurons by imposing a global
inhibitory rhythm that clocks network dynamics. In the first
phase of the rhythm (no inhibition), hidden units accumulate
synaptic inputs driven by the pixels, and spike when they
detect a relevant feature; these spikes correspond to binary
activity of a conventional (non-spiking) RBM in a single
update. In the second phase of the rhythm, the strong inhibition
resets all membrane potentials to 0. We sent the outputs of the
hidden units to the same linear classifier as before (note that
these classifiers are not implemented in the neural hardware).

We achieve 89% accuracy for out-of-sample data (see Fig. 4
for one trial). Our simple mapping from real-valued to binary
weights shows that the performance of the RBM degrades
gracefully, and suggests that more sophisticated algorithms,
such as deep Boltzmann machines, will also perform well in
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hardware despite low precision synaptic weights.

D. Autoassociation

Our fourth application was storing and recalling patterns
in a manner that allows a subset of a pattern to retrieve the
whole. The challenge of this autoassociation task is storing
patterns implicitly in synaptic weights such that they can be
recalled with fidelity. We approach autoassociation in two
distinct ways, one with a sparse version of the classic Hopfield
Network and the other with a two-layer spiking network
(Fig. 5).

The Hopfield Network is a classic neural network, which
realizes autoassocative memory in a recurrently connected
network by increasing connection strengths between correlated
neurons while decreasing strengths between anticorrelated
neurons across stored memory patterns. We select a sparse
Hopfield implementation, storing m binary patterns of length
n = 256 each with 8 1s (sparsity γ = 8/256) [17], [18]. Such
a sparse implementation is less sensitive to low precision
(binary) weights while maintaining a high memory capacity.
We trained the network offline, computing real-valued
connection strengths from neuron j to neuron i with the
Hopfield Rule given by:

Wji =

m∑
k=1

(
vkj
γ
− 1

)(
vki
γ
− 1

)

where vkj and vki are the stored states of the jth and ith neurons
in pattern k.

We mapped the real-valued synaptic strengths to the binary
neurosynaptic core using the same procedure that we used
for the RBM (Section 4.3): We imposed a global inhibitory
rhythm that clocks neuron dynamics; we binarized the weight
matrix (Wij) by using two axons for each neuron’s recurrent
connections, setting postive weights to one on a positive axon
(S0

i > 0) and the rest to one on a negative axon (S1
i < 0)

and setting S0
i , S1

i such that the sum total of excitation and

inhibition were preserved. Then, we set all neurons’ thresholds
(θi = 1) so that any net excitation caused a neuron to spike,
signalling the recall of a 1.

We tested the Hopfield Network’s capacity, the number
of patterns it can store, as well as its completion, how well
it recalls stored patterns. To test capacity, we activated each
pattern in its entirety (10 sets of patterns) and after 10 time
steps observed similarity between the final state and stored
pattern, given by the overlap:

β =
1

n

n∑
i=1

(pi − γ)(vi − γ)/γ/(1− γ)

where p is the original pattern, and v is the network state. We
found that for few patterns stored (α = m/n < 0.6) patterns
were well maintained, with β ≈ 1; as more patterns were
stored, storage degraded, with with β decreasing further below
1 as the number of stored patterns increased (Fig. 5(b)). We
tested the network’s completion by activating half the 1s in
each pattern (β = 0.5) and observing how the pattern overlap
β changed. For few patterns stored (α < 0.6), patterns were
faithfully recalled; β increased to ≈ 1. As the number of
pattern stored increased (0.6 < α < 1.0), the network state
moved closer to stored patterns but did not consistently recall
full patterns; β increased above 0.5 but did not reach 1. As
the number of pattern stored was further increased (α > 1.0),
the network state moved further from the stored patterns; β
decreased below 0.5, degrading from the partially activated
pattern.

In a similar manner to the Hopfield network, we imple-
mented autoassociative pattern recall in a two-layer spiking
network. The two-layer spiking network stores patterns in the
connections between two excitatory layers of neurons [19].
The first layer, E1, acts as both the input and output. When
activated, E1 neurons drive the second layer, E2, activating
only the neuron(s) most selective to the input, ensured by
winner-take-all inhibition mediated by a neuron in layer I
(Fig. 5(c)). Through reciprocal connections, activity in E2
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Fig. 5. (a) The Hopfield Network stores patterns in a recurrent weight matrix. (b) When the ratio of patterns to neurons (α) increases, when initialized
to the stored patterns (black), overlap (β) decreases. When initialized to stored patterns with half of the ones dropped (gray), the overlap increases. (c) The
two-layer network (E1 and E2) stores patterns in reciprocal connections between the excitatory layers. (d) When presented with stored patterns with half of
the ones dropped, the network restores the patterns.

drives recall of all E1 neurons in the original pattern. In a
system with 121 neurons in both E1 and E2, we stored 121
patterns consisting of 8 randomly selected E1 neurons. The
patterns were learned offline by initializing weights between
E1 and E2 to 0, then assigning each pattern to a unique E2
neuron and setting the weights between that E2 neuron and the
pattern in E1 to 1. To test completion, we activated half the
E1 neurons in a pattern each with probability 0.1 per step for
50 time steps (20 trials per pattern). The two-layer network
showed 0.995 correct hit rate, and 0.011 false positive rate
(Fig. 5(d)).

V. DISCUSSION

A long standing goal of the neuromorphic community is to
build compact, scalable, and power-efficient neural hardware
that is supported by a corresponding software environment.
Two recent notable projects with similar aims are PyNN [20]
and the SpiNNaker project [21]. Our breakthrough neurosy-
naptic core is the first of its kind in working silicon to inte-
grate neurons, dense synapses, and communication on chip,
leading to ultra-low active power in a dense technology, while
simultaneously demonstrating one-to-one correspondence with
a determinstic neural programming model.

As we look forward to building multicore chips with tens of
thousands of neurons and millions of synapses, the challenge
becomes searching the astronomic parameter space to find a
configuration that achieves a desired neural function. In the
current neural programming model, our approach is to learn
parameters offline where any optimization technique can be
used (i.e., the algorithm may or may not be neural inspired).
An alternative approach is to integrate learning into the neural
hardware itself (e.g., using spike timing-dependent plasticity),
allowing connections to be updated during run time (see [22],
[23] for examples). This approach, however, is limited to
learning rules that are efficient to implement in hardware.
We believe that a hybrid of these two approaches is the best,
similar to evolutionary biology: nature provides a hardwired
scaffold, while nurture allows for online adaptation.

APPENDIX A
NEURAL PROGRAMS (SOURCE)

The neurosynaptic core is defined as the set of parameters:

{Wji, Gj , S
Gj

i , Li, θi}

For each of the four demos, the neural parameter values used
to program each application, are listed in Table I. The synaptic
connectivity matrix Wji, is shown in Fig. 6.
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