
A Split-Foundry Asynchronous FPGA
Benjamin Hill, Robert Karmazin, Carlos Tadeo Ortega Otero, Jonathan Tse, and Rajit Manohar

Computer Systems Laboratory, Cornell University
Ithaca, NY, 14853, U.S.A.

{ben,rob,cto3,jon,rajit}@csl.cornell.edu

Abstract—We present the first published measurements of a
complex digital integrated circuit fabricated in both standard and
split-foundry processes. Our 1.3-million-transistor asynchronous
FPGA operates at over 300MHz in 130nm. We discuss the
challenges inherent in split design and our automated layout
tools that address them.

I. INTRODUCTION

The semiconductor industry relies heavily on access to cost-
effective integrated circuit production at state-of-the-art semi-
conductor foundries, which have become a global resource
providing service to a wide range of customers. For these
customers, design intellectual property (IP) must leave their
control for fabrication. This exposes the IP to certain risks such
as reverse engineering [1], hardware piracy [2], and malicious
modification [3]. Foundry customers, especially those involved
in national defense applications, must take steps to mitigate
these risks to protect their IP, economic position, and security
interests.

Split-foundry fabrication has been proposed as a technique
to enable use of state-of-the-art semiconductor foundries while
minimizing the risks to IP or reducing production costs [4,5].
Split manufacturing separates a design into Front End of Line
(FEOL) and Back End of Line (BEOL) portions for fabrication
by separate foundries. An untrusted foundry performs FEOL
manufacturing, then ships wafers to a trusted foundry for
BEOL fabrication.

Split manufacturing introduces additional complexity to the
design process, such as FEOL/BEOL mask alignment and
unknown differences in electrical characteristics of structures
made by two different foundries. We had a unique opportunity
to evaluate these challenges by fabricating two versions of the
same design: one manufactured normally in a single foundry
and the other in a split-foundry process.

In this work we describe the challenges in designing for
split manufacturing (Section II) and our split-foundry capable
synthesis flow (Section III). We also provide quantitative
analysis of the energy and performance impacts of the split
manufacturing process we used (Section VI).

The design chosen for this case study is an asynchronous
field programmable gate array (Section V). FPGAs can provide
an additional layer of IP protection, since the application is
not introduced until after the manufacturing process [6]. Our
asynchronous design methodology (Section IV) is robust to

This work was supported by IARPA award N66001-12-C-2009

gate and wire delays, accommodating any variation introduced
by the split manufacturing process.

To the best of our knowledge, this work is the first to present
measured results from a complex digital system fabricated in
a split-foundry process.

II. PHYSICAL DESIGN

We fabricated our FPGA design using two different 130 nm
processes: a complete FEOL/BEOL fabrication at an untrusted
foundry (Foundry A), and a split-foundry process in which
the FEOL and first metal level were fabricated at Foundry
A followed by BEOL manufacturing in a trusted foundry
(Foundry B).

Fabrication in a split-foundry process brings a number
of challenges, especially due to different design rules and
electrical characteristics. While the exact details will depend
on the choices of foundries and technology node, we present
the challenges we faced as a case study of the design consid-
erations inherent to split-foundry fabrication.

To select the FEOL Foundry A, a designer simply chooses
the process with the most appropriate semiconductor device
characteristics for the application. FEOL design rules are
unaffected by any design rules from Foundry B.

However, any differences in BEOL design rules and actual
BEOL implementations between Foundries A and B will result
in different electrical characteristics. Common metallization
stacks in state-of-the-art processes provide three to six thin
wiring layers. Some foundries offer up to three thick metal
layers, which have lower RC parasitics per unit length of
wiring. To make the most efficient use of planar wiring
resources, thin wiring layers are often well-suited for local,
dense interconnect whereas the thick layers are better for long
distance interconnect.

Oftentimes, most switching activity is confined to the lower
level metals—typically comprised of the thin metallization
layers. In our FPGA case study, the thicker, higher-level metals
are used mostly for power distribution nets, so the effects
of the thin BEOL characteristics dominate our performance
measurements. For our processes, Foundry B offers 10% to
15% worse RC characteristics per unit area for thin wiring, but
approximately 5% better RC characteristics for thick wiring.

To ease implementation, we used the union of the most
restrictive design rules from Foundry A and B to ensure
that our design would pass DRC in both foundries. Table I
shows examples of the BEOL design rule differences between
Foundries A and B, as well as our composite rule set.



TABLE I: Design rules normalized to Foundry A dimensions

Design Rule Foundry B Composite
Manufacturing grid 2.00 2.00
M1-M1 spacing 0.90 1.00
M6 min width 2.00 2.00
M7-M7 min spacing 0.80 1.00

Unlike metal wiring, via cuts have exact size and shape
requirements which differ for each foundry. Our composite
ruleset for vias implements the most strict rules for metal
overhang, but we use a placeholder cell for via cuts. When
emitting the final layout, we simply substitute the appropriate
foundry’s via cut geometry.

III. CELLTK: NON-STANDARD CELL LAYOUT

Our split-foundry toolflow is based on cellTK [7]. cellTK is
an on-demand cell generator that transforms a transistor-level
netlist into a design mask layout by clustering transistors into
cells and producing the physical layout for each cell. Each of
these “non-standard” cells is generated using two-step process:
a transistor placement phase followed by an intra-cell routing
phase. The cells produced by cellTK are compatible with
standard cell place and route tools, which we use to assemble
the final design.

Split manufacturing alone may not be enough to guarantee
security. Attackers can use device proximity and standard cell
pin placement information from the FEOL to infer BEOL
connectivity [8]. cellTK does not use standard library cells, so
it is less vulnerable to this approach. Further, it allows for full
designer control over placement and routing of FEOL devices
and metallization if additional obfuscation is required.

cellTK gracefully handles differences in the manufacturing
grid by aligning geometry to the most conservative grid. An
off-grid design complicates or outright prevents alignment of
the FEOL/BEOL geometry when assembling the final wafer.
Common hierarchical file formats such as GDS-II can exac-
erbate the grid problem if different grids are used throughout
the hierarchy.

Our approach to our dual-foundry fabrication was to gen-
erate layout using geometry intended for Foundry A, then
replace the BEOL with that of Foundry B. This requires layer
translation steps as well as the instantiation of the appropriate
vias as described earlier. During the conversion, we verify that
all portions of the design satisfy our composite DRC ruleset
and that all geometry is on the most conservative grid.

IV. ASYNCHRONOUS DESIGN METHODOLOGY

Our FPGA was designed using Martin synthesis [9], a
procedure that decomposes a sequential program description
into fine-grained parallel hardware processes. These processes
are Quasi Delay-Insensitive (QDI) [10]: they operate correctly
in the presence of arbitrary wire or gate delays1. As a result,
QDI circuits are intrinsically robust and tolerant of variations

1With the exception that the relative delay on certain wire forks must be
bounded

in fabrication process, voltage and temperature. For exam-
ple, reducing the operating voltage simply causes processes
to operate more slowly. This adaptability makes self-timed
circuits a good fit for BEOL variations introduced by split
manufacturing.

Instead of using a global clock to synchronize data transfers,
asynchronous processes communicate by passing tokens over
delay-insensitive, point-to-point channels using a handshaking
protocol. Processes are naturally event-driven, waiting in a
quiescent state with no switching activity until a data token
arrives. This is the equivalent of perfect clock-gating in a
synchronous system. Inactive processes consume only leakage
current.

Finally, the local synchronization behavior of self-timed cir-
cuits enables average-case system performance. Synchronous
systems define their clock period by the slowest pipeline stage
(even if it is rarely exercised), throttling the entire system.
In asynchronous systems, system throughput is determined
only by active hardware units. Thus, each execution path
runs at maximum local throughput, yielding average-case
performance over all possible paths.

V. ASYNCHRONOUS FPGA

A. Architecture

Our FPGA is based on the one described in [11] and [12].
It has an “island-style” architecture, as shown in Figure 1.
The FPGA fabric is organized as a symmetric 2D array with
“islands” of logic in a “sea” of programmable routing.

Fig. 1: “Island-style” FPGA architecture

Each tile in the array contains both a logic block and routing
fabric. The FPGA is asynchronous, so all logic is implemented
as QDI processes and all communication occurs via point-to-
point delay-insensitive channels, as described in Section IV.

The logic block contains four lookup tables (LUTs), each of
which can be programmed to implement any four-input logic
function. LUT outputs can be used as inputs to other LUTs in
the same tile without using any mesh routing resources. The
logic block also includes units to source and sink data tokens.

Within the routing fabric, a programmable switch box
statically connects inter-tile channels in a 2D mesh network.
This FPGA has 32 channels/tile in each direction. Each tile
also has local routing connecting the logic block to the mesh.
Unlike a synchronous FPGA, the routing fabric is pipelined to



support high throughput. The asynchronous channel protocol
permits this pipelining without retiming problems.

B. Physical implementation

For this chip we fabricated a 5x5 array of tiles, shown in
Figure 2a. This FPGA fabric is large enough to allow us to
characterize the split-foundry process.

(a) (b)

Fig. 2: FPGA layout floorplan (a) and test platform (b)

Because of pin limitations on this test chip, we use a scan
chain at the array periphery to pass data to and from the
FPGA. This allows us to test far more functionality than would
otherwise be possible, albeit at greatly reduced throughput.

The FPGA is programmed by writing to a configuration
memory, implemented as a linear scan chain. In addition to
asynchronous data flow graphs, we can also map synchronous
designs to the fabric using a simple conversion tool. Design
place-and-route can be performed using VTR [13] (formerly
VPR) or specified manually for the greatest control.

Each tile uses approximately 52k transistors. The configu-
ration memory consumes 58% of those, routing fabric another
32%, and logic block 10%. This routing-to-logic ratio is
typical of FPGAs and reflects the high cost of reconfigurability.
Die area for the chip is 9mm2, with 1.33 million transistors.

C. Using Asynchronous FPGAs for Measurement

Self-timed circuits naturally run at highest possible through-
put for a given environmental condition (Section IV). This
behavior allows us to experimentally characterize each process
technology by simply measuring the performance of a given
benchmark.

Our FPGA was designed with measurement in mind. There
are on-die frequency taps placed throughout the routing fabric
that observe the switching activity on the mesh channels
and pass it off-chip for measurement. For example, Figure 3
shows an example configuration for measuring the maximum
FPGA operating frequency. Tokens are generated in one logic
block, routed through a channel where they are measured, and
consumed in another tile. When measuring frequency, we do
not use the periphery scan chain to avoid artificially throttling
the FPGA.

In addition, the programmable FPGA fabric allows for
highly detailed experimentation. It is possible to choose the

number of transistors active at a given time and their location
on the die. This allows us to characterize both performance
and power at a fine granularity.

Fig. 3: Test to determine maximum FPGA operating frequency

VI. EVALUATION

To evaluate the impact of split manufacturing on functional-
ity, power, and performance, we compared split-foundry chips
with those fabricated entirely by Foundry A.

Figure 2b shows our custom-designed automated testing
platform, which loads configurations into the FPGA, runs
test procedures, and collects data. All current measurements
were performed on ceramic-packaged die at room temperature,
using a separate high-precision source-measure unit.

A. Functionality/Yield

We constructed a benchmark exercising the entire configu-
ration memory and all LUTs within the FPGA. All die2 from
both processes were found to be completely functional. This
suggests that at least for our particular FEOL/BEOL pair, split
manufacturing is a viable option.

B. Static power

To measure static power, we loaded the FPGA with an
empty configuration. Due to the event-driven nature of self-
timed circuits, the absence of data inputs guarantees there will
be no switching activity.

Static power consumption depends only the FEOL transis-
tors3, so we should expect identical results for both fabrication
techniques. Figure 4a shows that this is indeed the case:
measured leakage current is closely matched across the full
range of supply voltage. The average static power consumption
of Foundry A chips was 1.57mW at 1.5V and 2.09 µW at
0.7V, versus 1.58mW and 2.00 µW for the split-foundry.

C. Dynamic power and performance

Maximum operating frequency4 for the FPGA was mea-
sured using the configuration shown in Figure 3. We instanti-
ated 15 of these test configurations at different locations within
the fabric, in order to capture intra-die variation.

Unlike static power, maximum operating frequency depends
strongly on the BEOL wiring, which has 10-15% higher
parasitic capacitance for thin wiring in Foundry B. It takes

212 chips from Foundry A alone; 13 split-foundry chips
3Assuming power networks are adequate to handle the very small current
4More precisely throughput, measured in asynchronous tokens per second.

This has units of Hz and is roughly equivalent to synchronous frequency.



0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Supply Voltage [V]

10−3

10−2

10−1

100
L

ea
ka

ge
C

ur
re

nt
[m

A
] Foundry A

Split foundry

(a) Leakage current for full FPGA

260 280 300 320 340 360 380
Frequency [MHz]

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

te
st

s

Split Foundry
Foundry A

(b) Test performance cumulative histogram

18 20 22 24 26
Energy per cycle [pJ]

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

te
st

s

(c) Test energy cumulative histogram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Test number

240

260

280

300

320

340

360

380

400

F
re

qu
en

cy
[M

hz
]

..

.. Split Foundry
Foundry A

(d) Frequency distribution for individual test sites across all die

Fig. 4: Measured static and dynamic characteristics for each manufacturing process

longer to charge and discharge this capacitance, so we would
expect the split process to be somewhat slower. Figure 4d
shows the frequency distribution for each test site across all
chips. The split-foundry chips are generally slower overall,
but the variation between die is too large to allow a definitive
conclusion.

The trend is more evident in a cumulative histogram of all
tests, pictured in Figure 4b. The distribution for Foundry A
chips is shifted higher in frequency, with a mean of 342MHz
versus 311MHz for the split-foundry5.

Figure 4c shows a similar shift, with split-foundry chips
consuming more energy per operation on average6. This too
follows from what we know about the BEOL, since each signal
transition in the split process must charge and discharge a
larger capacitance.

VII. SUMMARY

In this paper we presented a comparative study of an
asynchronous FPGA fabricated in both a standard 130 nm
process and a split manufacturing process. We also described
our methodology for creating split layout, as well as the
challenges posed by split-foundry design.

Measurements found all split-foundry FPGAs to be fully
functional, with a mean peak throughput over 300MHz.
Compared to chips from the standard process, they showed a
10% decrease in frequency and a 5% increase in energy, both

5Foundry A: n=165, s=28.0 MHz; split-foundry: n=195, s=29.2 MHz
6Foundry A: x̄=20.3 pJ, s=1.71 pJ; split-foundry: x̄=21.2 pJ, s=1.97 pJ

likely attributable to higher capacitance BEOL wiring. Due to
the inherent variation tolerance of asynchronous circuits, we
were able to use the same netlist without modification for both
processes. Our results demonstrate that split manufacturing is
a viable technique.

REFERENCES

[1] R. Torrance and D. James. “The state-of-the-art in semiconductor reverse
engineering.” IEEE DAC, 2011.

[2] J. A. Roy, et al. “EPIC: ending piracy of integrated circuits.” IEEE
DATE, 2008.

[3] R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection.” IEEE TCAD, 2009.

[4] “IARPA Trusted Integrated Circuits (TIC) program announcement.”
https://www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6.

[5] R. Jarvis and M. G. McIntyre. “Split manufacturing method for advanced
semiconductor circuits.” US Patent 10/305,670, 2007.

[6] S. Trimberger. “Trusted Design in FPGAs.” IEEE DAC, 2007.
[7] R. Karmazin, et al. “cellTK: Automated Layout for Asynchronous

Circuits with Nonstandard Cells.” IEEE ASYNC, 2013.
[8] J. Rajendran, et al. “Is Split Manufacturing Secure?” IEEE DATE, 2013.
[9] A. Martin. “Compiling Communicating Processes for Delay-Insensitive

VLSI Circuits.” Distributed Computing, 1986.
[10] A. Martin. “The Limitations to Delay-Insensitivity in Asynchronous

Circuits.” 6th MIT Conference on Advanced Research in VLSI, 1990.
[11] J. Teifel and R. Manohar. “An asynchronous dataflow FPGA architec-

ture.” IEEE Computers, 2004.
[12] R. Manohar. “Reconfigurable Asynchronous Logic.” IEEE CICC, 2006.
[13] J. Rose, et al. “The VTR project: Architecture and CAD for FPGAs

from Verilog to routing.” ACM FPGA, 2012.


