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ABSTRACT needed. In fact, many authors suggest that a dense deploy-
ment should be avoided in sensor networks (see e.g. [2]). In
In this paper we compare the energy efficiency of wirelessihis paper we argue the opposite. We show that, if one col-
sensor networks sampling a continuous sensor field in tWQects the distributed information to a central node with a data
different types of deployment, which we refer to as the Highgriven strategy, both the communication cost and energy
Density (HDSN) and the Low Density (LDSN) Sensor Net-consumption remain the same or decrease as the sensor den-
work architectures. In the LDSN, a set of sensors with highsity increases, provided that the sensor field has limited de-
resolution are critically deployed at sampling locations so grees of freedom in the model. This is especially important
that each sample is nearly uncorrelated and is transmittedjny the sensor network application since the sensor field is
to the central node in a separate channel. In HDSN, a sim-jnyariant to the sensor deployment. In our argument we uti-
ple zero-crossing detector is used at each sensor and thgize data-driven multiple access protocols that we recently
sensor field is reconstructed at the central node with theproposed [4, 5] requiring a communication cost that scales
zero-crossing information extracted from the sensors’ ob-yyith the underlying data complexity instead of the number
servations. By proposing a scalable data collection proto- of nodes in the network. Our main objective is to demon-
col for HDSN, we show that the reconstruction performance gtrate that the ‘quantity’ of the sensoi=( a lot of cheap
of the sensor field at the central processor can be achievedensors with smalll batteries) can be effectively traded-off
with low complexity at the same bandwidth and energy costyith the ‘quality’ of each sensoi.é. few, highly accurate
Therefore, the longevity of the sensors is increased due tgng critically deployed sensors with large energy supplies).
the reduced per node energy consumption and the reducegience, the decision on network deployment does not nec-
computational energy for the data representation at eachessarily have to favor the configuration of highly accurate

and fault '[0|el’al’lce Of HDSN makeS |t an bettel’ alternative network crowded with Cheap devices; instead, it can find

to the LDSN architecture. the optimum point in terms of energy between these two
extremes. The denser network is actually more versatile,
INTRODUCTION because a number of parameters necessary to calculate the

optimal deployment of highly capable nodes are not known
In recent years, several authors acknowledged the fact thad-priori.
networking is a major obstacle in the development of large
scale wireless network. In fact, in the point-to-point net-

work scenario, Gupta and Kumar [1] showed that the per,, ., (HDsN), where cheap sensors are deployed with high
node throughput vanishes &41/v/N), where N is the

_ . density; (i) The Low Density Sensor Network (LDSN),
number of nodes in the network. Even worse scaling 1aws,\nare 3 small number of high resolution sensors are crit-
were derived for thenany-to-oneetwork scenario ab(1/N)

, / ically deployed at the minimum sampling points in the sen-
[2] or O(log N/N) [3] (when applying antenna sharing). ¢ field. The comparison is done at three fundamental lev-

Thesg arguments indicate that having a large number_of SEMs|s: 1) the reconstruction performance attainable by the two
sors in a wireless network creates such a communicatioryy ssems considering a simple zero-crossing detector in the
burden that it is crucial to minimize the number of Sensors pgN and a high precision A/D converter in the LDSN:

This work is supported in part by NSF under grant CCR-0431077 2) the comparison between the energy requirements for the
and ITR 0428427. data collection; 3) the energy required by the hardware nec-

In our comparison we examine two extreme examples
of network architecture: (i) The High Density Sensor Net-




essary to implement the two architectures.

The energy efficiency of the data collection process is
discussed in two parts. First, we describe the data-drivel
transmission scheduling scheme that extracts the data eft
ciently from a large population of sensors and show that the
same reconstruction performance can be obtained by uti
lizing the same bandwidth resources for both the HDSN
and the LDSN. Secondly, we compare in terms of transmis:
sion power where we show that the two systems have com
parable power consumption when they utilize transmissior
methods with comparable complexity.

PROBLEM SETUP Fig. 1. lllustration of the HDSN (black points) versus the

Consider a network of sensors where each sensor takes me LDSN (cross-headed points) sampling in time.

surements from a real continuous scalar field defined over . .
the m-dimensional spatial coordinates represented by theDefinition 1 Suppose there exist3 such that the matrix

vectorx, and the tir_ne—dime_nsiOzn_ Assu_me the_tt the fie_lc_j is A (A)ig = Ur(xi, b)), )
expanded (approximately) in a finite dimensional basss, _ _ _ o
the fieldV/(x, t) is such that: is invertible. Such a sé® is defined to be a minimum recon-

struction set if and only if, for all other sef®’ that satisfy

the invertibility criterion of (2), we haveD’| > |D].
V(x,t) = Crh(x,1t). (1)
k=1 Note that aminimum reconstruction se$ not neces-
whereyy,(x, ), k = 1,- - , M is a set ofin-dimensional in- sarily unique. Furthermore, among the minimum recon-

dependent basis functiond/ is effectively the number of struct sets the one to be preferred is such fdtas mini-

degrees of freedowf the sensor field. The expansion in (1) mal_ c?hndltlon numb(fer, Wthh minimizes :heéalstlrr:atlon ﬁr_
can be valid assuming a deterministic model or can be in-'Of IN the presence ot noisy measurements. Llearly, we have

terpreted in the mean square sense for a random model. OL{P = M. Denoting byC the vector of the coefficients in

goal is to reconstruct the field remotely with a certain Mean _1)’ it is clear thath guarantees the existence of the solu-

= T i

Square Error (MSE) from a finite set of quantized measure-tIon C A_ V@ stand§ for pseudo mverse_) and a perfect
ments. In Fig. 1, we illustrate a one-dimensional network reconstru_ctlon OV.(X’t) Is attainable atall points using (1).
of sensors observing a smooth random signal in both spac&z) Imp“_C't sgmpllng . . .
and time as defined in (1). The grey flat plane in the figure The implicit sampllng here r_efers tothe dl_ther—sampllng
is the zero-plane, which highlights the zero-crossing con—methOOI propo_seql n £6]' n t.h.ls case, the fidldx, 1) 1S
tours of the sensor field (black mesh curve). In LDSN (the represented with infinite precision at the set of coordinates
cross-headed arrows), the sensors are deployed at the criti- Vg = {(xi,ti) : V(x4,t;) — g(x4, ;) = 0}. (3)
cal sampling points where an accurate data representation of . . -

: : whereg represents the dither function. Similar to the pre-
each sample is transmitted to the central processor. In con-

trast, in the HDSN the sensors are densely deployed WhileVIOUS case, exact reconstruction Is pOSSIbIEgItOI']taInS a

. ... minimum subseD C V), as defined in Definition 1. Denote
each sensor records only the local zero-crossing points "l) th ¢ - £ it foll that
time (1 bit quantization). y g the vectorigli; = g(x. t;), it follows tha

AC=V=g — C=Alg
Sampling with infinite precision
Let D = {(x;,%;),i = 1,...,K} be thereconstruction ~ Sampling with finite precision
setthat represents the set of sampled values utilized for redn practice, the sampling cannot be achieved with infinite
construction. Clearly, if the sensors do not move, severalprecision either due to the finite levels of quantization or
samples in time are taken at the same locations in space. because of the finite deployment of sensors. The quantiza-

(1) Explicit sampling tion error is on the sampled valé = V + Ey for ex-
Let V be the vector of samples with infinite precision at plicit samplingand on the level crossing time and position
the points inD, i.e. (V); = V (x;,t;) where(x;,t;) € D. p; = (%;,1;) = p; + ; for implicit sampling



Let us assume that, with finite precision (explicit or im-
plicit) sampling, we have an estimaiz= C + E¢. Thus,
the sensor field reconstruction and its MSE are respectively:

M
V(x, ) =V(xt)+ Y [Eclmthm(x,t),  (4)

m=1
D = /E
T , (5)_ S = {so,---,sn—1} arein this simplified model deployed
whereR g, = E{EcEG} andtr(X? is the trace of matrix  , 5 one-dimensional network and lete D be the location
X andW¥ has(m, n)-th element defined as of sensors; such thateg < z1 < -+ - < Ty_1.

(1) Low Density Sensor Networks & Explicit sampling
(P = /wm (x, t)1hn(x, t)(dx)dt. (6) In LDSN, the sensors are critically deployed with equal
spacingd = 1/2AW (i.e. the sampling period for &/-
Although the imprecision in the estimated coefficidt bandlimited function with the over-sampling ratio> 1),
exists in any case, the quantization error in explicit andwhere each sensor observes the Nyquist sample, quantized
implicit sampling contributes differently tii- and, con-  with a uniform quantizer having quantization error less than
sequently, toD. In fact, in the case oéxplicit sampling ¢ as shown in Fig. 2. The mean square (MS) total distortion

2 Fig. 2. The illustration of the quantization resolutigrand
(dx)dt = tr(PRg,,) the zero-crossing resolution

M
Z [EC’]mem (X7 t)
m=1

V =V + Ey and, thus: in this case is approximately [7]
Ec = A'E D = tr(®AT ANTY (@ M
c v o= tr(¥AREg, (AT)")  (7) D= ﬁq? (9)

Because the entries & are in the order of the quantiza-
tion step-sizey, it follows from (7) thatD = O(¢?).

Omitting the details for brevity, in the case iofiplicit
sampling a first order approximation of the error is:

As shown in [8], comparable reconstruction performance
can be using the knowledge of the zero-crossing points.
(2) High Density Sensor Networks & Implicit sampling

In HDSN, we assume that the distance between adjacent

Ec = AY(E, — E,C); (8) sensors is less thani.e. |x; — z;41| < 9, for 6 small. By
recording the zero-crossing instants at each sensor position,
[Egli = Vg(xi,t:)Ti, [Ealim = Vo (X, ;)T the sensors have knowledge of the sign information at the

. . o . articular snapshot in timege.
Assuming that the maximum quantization-step in the coor-p psho e

dinates(%;,#;) is 7, also in this case becau®, andE 4 Vi = sgrV (z;)] (10)
entries are proportional te, evidentlyD = O(72).

To streamline our discussion in the following we restrict where sgiy) = 1 if y > 1 and sgify) = 0 otherwise. If
ourselves to the one-dimensional case where the underlythere exists two sensoks and sj such thatV/; # Vj and
ing sensor field is bandlimited. The same arguments can béz; — z;| < 7, then the precision of the zero-crossing point
rephrased to handle a multi-dimensional, space and timecan be obtained up to, as shown in Fig. 2. In this case, it
sampling problem. has been shown in [8] that the distortion of the zero-crossing

reconstruction is bounded deterministically as

EQUIVALENCE OF THE RECONSTRUCTION o )
PERFORMANCE V(z) =V (2)]* < cor (11)

When the underlying sensor field can be described by a onewhen the crossings are obtained for a sequence of stable
dimensional bounded functiol (z) € BY, where B} sampling points [8], which provide a valid reconstruction
is the set of all bandlimited functions ih?(R) that are  setD. Hence, LDSN and HDSN achieve a comparable MS
bounded in frequency by’ < 1 without loss of gener-  distortion performance if is of the order ofr.

ality (i.e. the Fourier TransforndV (w) = 0 for |w| > W Note that it is necessary to choose the dithered func-
and||V]|2 < oo0) the basis function in (1) is theincba-  tion g(z) such that there is at least one zero-crossing point
SIS V() = sin(w(z — m))/(z — m). The N sensors  within each Nyquist sampling period. For example, for
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V € BY and|V| < 1, the functiong(z) = ~y cos(2rW Ax),
wherey > 1, is sufficient to achieve the sequence of sta- _ ) ) ) )
ble sampling points [6,9]. The reconstruction is achieved F_'g_' 4 The |I|ustr_at|on (_)f the tre_e algorithm by spatially
through the inversion oA, where the invertibility is guar- dividing the one-dimensional regions.
anteed.
interval [z, + 1/2AW), wherex is a Nyquist sampling
EQUIVALENCE OF THE COMMUNICATION point, which we call grouf/yg. If an “e” is observed, the
RESOURCES interval is adaptively divided into subintervals until &'

_ or “1” is observed. At each level of the tree, the interval
We calculate the data collection cost for LDSN and HDSN s separated into disjoint intervals having equal length. For

respectively as a function of the number of channel accessegstance, at levet the interval is divided int@* disjoint in-
rGQUired and the total power needed to deliver the necessanéryals. This process locates Zero-crossings using the min-
information, for equivalent reconstruction performance. TO imum number of channel accesses [4] which in this case is
obtain comparable communication costin HSDN we gatherz — O(log %), wherer is the desired precision. Since it
the zero crossing information using a generalized data drivefy guaranteed by the dither function that at least one zero-
strategy for data collection known as Group Testing Multi- crossing point occurs within each Nyquist interval, we can

ple Access (GTMA). consider the first answer to be an erasure and start splitting
immediately.
Group Testing Multiple Access In the multidimensional case, we envision the HDSN

If V(«) is a smooth function, it is likely that large patches to beactivity driven i.e. when the information relative to

of sensors in the proximity of each other will observe the € current Nyquistinterval in time and space has been col-
same sign informationsgn(V;) = 0 or sgn(V;) = 1) as lected, the network falls asleep until the Nyquist interval

shown in Fig. 3. Because the data are highly redundant an§*Pires. After that, the sensors wake up and as soon as a

because we are only interested in finding one zero CroSS[1ode records a crossing, it sends a broadcast signal which is

ing per Nyquist interval, it would be extremely inefficient replicated cooperatively at the physical layer. The problem
to poll each sensor individually. In GTMA, the channel as- of collisions is ruled out, because other nodes that transmit

sighed to a specific group of senséfsc S: each sensor their zero crossing information nearly simultaneously, only

in the group answers simultaneously to a query based on its€inforce the signal that initiates the GTMA.
own data (in this case based gm(V;)) [4]. Depending on
the query, this may require one or more channel uses. Th&€ommunication Cost of HDSN versus LDSN

subclass of GTMA strategies that is effective in our prob- |n | pSN, an obvious choice for the transmission sched-
lem is the so calledree splitting strategywhere the groups  yling is to enable the critically deployed sensors to trans-
of sensors scheduled to transmit are in adjacent locationsmit their encoded samples through independent channels
and the query comprises two questions (and thus two chansince the data at each sensor are non-redundant. In this case,
nel uses): ‘do you havegn(V;) = 07" and ‘do you have  the number of channel accesses for each sensor is equal to

sgn(Vi) = 17'. When both queries receive a positive an- ;. — O(log 1) when there aré levels in the quantizei.e.
swer, we have an erasueethat indicates the presence of the quantization step — c - 9-k wherec is a constant de-

a Z_efo crossing in that gro“p_- Fig. 4 |!Iustrate_s the tr(_ae'pending on the dynamical scale of the signal or the desired
splitting strategy. GTMA queries the entire spatial Nyquist distortion at the receiver

LWe assume that each sensor has hard-coded its own position when N the tree splitting protocol used for HDSN, only one
deployed and that knows in which location it is. group of sensors is scheduled to transmit in each level of the




tree shown in Fig. 4. Therefore, the zero-crossing point iswherev is the optimal decision threshold determined through
located within an interval of length = 2% /2A\TW by using  the given false alarm probability. If a pulse is detected in
only & number of channel accesses wheére= O(log %). both time slots, the output corresponds to ¢nasurecase
Hence, the information required for reconstruction in both while if the pulses are detected in only one time slot, the
LDSN and HDSN can be retrieved with the same numberoutput corresponds eithéror 1. When the area of the net-

of channel accesses. work is small, the emitted pulses can be received directly
from the transmitting source. If this is not the case, one
must rely on neighboring nodes to serve as relays to distant

nodes. Letl; = {s; € S — Up : D(rz(l)(t)) = 1} be the
set of nodes that received reliably directly from the trans-
We consider the simple transmitter cooperation techniquemission of the source. All the nodes in this set will then
proposed in [10, 11], for which the power consumption in retransmit the same pulgét) to all the other sensors in the
transmission is show to be equal in HDSN as in LDSN network, which will then ignite another cooperative relay
and discuss a second option which is to uses beamformingtransmission by the third tier of receivers. This on-going
where HDSN has a considerable gain over LDSN. process will continue until all the sensors in the network are
reliably informed that there exists a sensor that observed the
bit 0, i.e. Uy is non-empty.

Let L; be the set of nodes that received sufficient signal

In GTMA, the knOWIedge of th@, 1, e information is suf- energy to exceed On|y after the emission of nodes lp"b,
ficient for each sensor to determine whether or not it be-7, ... r, . In this case, The signal received by nodes in

longs to the scheduled group of sensors. We assume that th@e-th layer is approximately
nodes are simple pulse emitters and that in order to distrib-
ute output information throughout the network, they use the P =1
symbol-by-symbol relay scheme proposed in [10], called (1) ~ Z di p (t = dyi/c+ Z5h> +14(t)-
the Opportunistic Large Array (OLA) system. kisi€lig | K h=1
Specifically, letl is the group of sensors that are sched-
uled to transmitand/, = {s; € U : sgn(V;) = b} C U
wheresgn(V;) = 0,1 is the symbol observed by sensor
s; andb = 0,1. During each transmission period, we as-
sign two independent time slots (CHO and CH1) to the sen-
sors inU. All the sensors iy emit a pulsep(t) in the
channel CHO and all the sensordin emit a pulse in CH1.
Let us consider the receiver model for CHO in the following
since the signal in CH1 performs exactly in the same way.
Initially, let each sensor i/, emit a pulsep(t), e.g. the
mono-cycle pulse in UWB systems, to all other sensors in
the network. The signal received at sensas

ENERGY EFFICIENCY OF HIGH DENSITY
SENSOR NETWORKS

Asynchronous Cooperation for HDSN

(13)
Not that this methods floods the HDSN with all the data that
are necessary to follow the protocol as well as informing
the remote central processor. Therefore, coordinating the
sensors and reaching the distant receiver are obtained in one
operation, at no additional cost.

The results in [11] provide the necessary conditions on
the transmitted energy to guarantee full collaboration in the
two-dimensional network that guarantee that the network
‘reliably detect and relay the transmitted symbol. We can
extend those arguments in the 1-D setup. We denote by
P, the power of the source that initiates the transmission
and letP, be the power retransmission and assume that the
pulse is sufficiently narrow that their contributions can be

rl(l)(t) = (1 t)+n;(t Z —dji/c)+ni(t) resolved and combined. We assume that all sensors have
jis;€U0 ]Z the detection thresholg. and let the path loss be defined as
(12) 1/(1+d)?.2 The result is provided for a continuum approx-
where P; is the power emitted by senssey, d;; is the dis-  imation [11] of a dense OLA network with only one source
tance betweer; ands;, c is the speed of light and;(t) is initiating the transmission.

the noise at sensaf with varianceN, /2.
Although the signal of the sensorslify will be received
by all other nodes, not all sensors will yield a reliable de-  2The additive constant in the denominator of the path loss model

tection. Using the Neyman-Pearson criterion, we define theguarantees that the channel gain does not go to infinity when the distance
decision rule at sensef as is close to zero. However, the performance guaranteed in this scenario
will also be achievable for the case where the path I0$$d§, since the

Lemma 1 For afixed detection threshold, the relay trans-

1) loss in our model decays faster with distance. Furthermore, wltisn
D(r; (1) = 1{||T§1)(t)”22,/} large, we have /d* ~ 1/(1 + d)°.



mission is received reliably at an arbitrarily large network We should note that, in HDSN, the signals may not be

area when the sensors are distributed in continuum and ifcompletely orthogonal as assumed previously and the fad-
P, > v.andp > (3 + 2v/2)v., wherep is the average  ing may cause destructive interference. Nevertheless, it is
power emitted by the sensors located within a unit interval. expected that in the high density network the per node en-

Let d. be the average distance between the sensor and thig'gy consumption is still reduced significantly.
central processor, which is common for all noded.if>>
d;; for all 7, j. Assume that the sensor network is confined THE COST OF HARDWARE AND COMPUTATION

within the region0, D], then the minimum power required _ ,
by each relaying node i8, = (3 + 2v/2)v.D/(N — 1). The local cost of sampling and computation for the two

On the other hand, when the full network cooperates, sincd"€chanisms has many contributions.  First, the physical
it is necessary to hav®,.,/(1 + d.)? > v, the required phenomenon of interest must be sensed. Assuming that the

aggregate energy B, = v.(1 + d.)%. Thus, the power result of the sensing process is a signal that must be dig-
emitted by each rela(;/ing sensor should be ’equdPto: itized, we estimate the cost of creating the sample as the
ve(l + d.)? — PJJ/(N — 1), where N is the numbiar of cost of analog-to-digital (A/D) conversion. Once the sam-

sensors in the network. In this case. if the condition ple is created, there is an additional energy cost in convert-
’ ing the sample into a form suitable for communication, and

ve(l+de)® — Py > (3+2v2)r.D the associated protocol processing overhead associated with

holds, the power emitted by the sensors to reach the far degdifferent communication mechanisms. We will estimate the
tination will simultaneously fulfill the power requirements a/gorithmic overhead of the two mechanisms assuming a

to achieve sensor collaboration. By settig= v, (i.e.the ~ Nghly optimized platform for the sensor nodes [13, 14].
minimum source power) and for sufficiently large, the (1) Analog-to-digital conversion o
condition is satisfied witd, > [(3 + 2v/2)D]~1/2 which is A useful figure-of-merit for A/D converters is given by
areasonable distance for a central processor at a far destind- = 2SNEViES 5 fump/ Pais, WhereSN Rbits is the name
tion. In fact, it is sufficient to havé. > D if D > 3 +2v/2 conventionally used to indicate the number of bits of the
meters, which is a fairly small area for the deployment of A/D converter, fs.,, is the sampling frequency, an;
sensor networks and the problems that arise in large scalt the dissipated power. This metric combines the sampling
networks would not be a concern in this scenario. frequency, the precision, and the power dissipation of the
Remark— The OLA system utilized for comparison in our A/D converter allowing comparison across different imple-
paper is an asynchronous cooperation strategy which is simMentations [12]. In other words, given a fixed sampling
ple requires minimum overhead for coordination and re- rate and architecture, the power requirements for an A/D
duced latency due to the symbol-based relaying structureshould scale with the number of quantization levels. For
However, the receiver performance can be further improvecCritically deployed LDSNSs, the power required to generate
if a more sophisticated cooperation strategy is used. In thet Sample will be dependent dig, whereq is the quan-
extreme case, the sensors can be treated as a large anterfif@tion uncertainty. For the HDSN scenario with simple
array that performs beam-forming towards the far destina-Z€ro-crossing detectors, the power requirements will be in-
tion. In this case, for a high density network whéresen-  dependent of—in fact, they should be a facta/q lower
sors are located in each Nyquist interval, the beam-formingthan the A/D converter required for the HDSN. The fre-
signal achieves/ times the gain in the received signal-to- quency of samplingfs.,, for the LDSN deployment is
noise ratio as opposed to having one sensor per Nyquist indiven by the Nyquist rate, and is fixed by the bandwidth
terval in LDSN, which shows that the high density deploy- of the power spectral density of the random process in time.
ment can be superior to LDSN by order of magnitudes, if For HDSN, the samples are generated in an irregular fashion

the complexity of beam-forming towards the central node PY the random zero crossings that occur. Hence, the para-
was tolerable. meter fsqamp is replaced by the expected number of cross-

ings of the random process. For example, using the cel-
ebrated Rice’s formula, for a stationary Gaussian process

Energy Consumption of LDSN h ber of . . al m
In LDSN, each sensor transmits their messages to the cen e average number of crossings is equa to/— " (0),

: . . . wherep(7) is the correlation coefficient of the process. In-
tral processor without cooperation which requires a power _ .y [ 4£25(f) df o
of v,(1 + d,)? at each sensor. Therefore, the battery at eactferestingly,— " (0) = g7 T sha This is of the or-
sensor will be depleted rapidly which would require batter- der of the normalized second moment of the power spec-

ies with high energy density and, thus, high cost. tral density. The square root of this is analogous to a stan-



dard deviation, and is a measure of the suppor® @f) in In contrast to the LDSN, the advantage of HDSN is its
the frequency domain. Hence, on average, the number ofystem versatility and robustness to failure. In fact, the fail-
crossings should be of the same order as expected given thare of a node will not increase the distortion as drastically as
Nyquist rate. that of LDSN. Furthermore, if the density of the nodes are
The net effect is that while both schemes generate thesufficiently high. One can simply increase the number of
same number of samples, the HDSN scenario uses muchhannel access to increase the precision of the zero-crossing
less power to generate each sample—a factay glower. position as illustrated in the tree splitting algorithm. Sim-
(2) Protocol overhead ilarly, one can increase the number of channel accesses to
The protocol overhead is a quantity that is difficult to retrieve additional zero-crossing points, adjusting to the fre-
provide asymptotic arguments for, as it depends on the preguency of the sensor field. Therefore, the network configu-
cise nature of the underlying hardware architecture. Theration is invariant to the application at hand.
bulk of the power contribution is from the actual protocol
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