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ABSTRACT

In this paper we compare the energy efficiency of wireless
sensor networks sampling a continuous sensor field in two
different types of deployment, which we refer to as the High
Density (HDSN) and the Low Density (LDSN) Sensor Net-
work architectures. In the LDSN, a set of sensors with high
resolution are critically deployed at sampling locations so
that each sample is nearly uncorrelated and is transmitted
to the central node in a separate channel. In HDSN, a sim-
ple zero-crossing detector is used at each sensor and the
sensor field is reconstructed at the central node with the
zero-crossing information extracted from the sensors’ ob-
servations. By proposing a scalable data collection proto-
col for HDSN, we show that the reconstruction performance
of the sensor field at the central processor can be achieved
with low complexity at the same bandwidth and energy cost.
Therefore, the longevity of the sensors is increased due to
the reduced per node energy consumption and the reduced
computational energy for the data representation at each
sensor. Furthermore, we claim that the system versatility
and fault tolerance of HDSN makes it an better alternative
to the LDSN architecture.

INTRODUCTION

In recent years, several authors acknowledged the fact that
networking is a major obstacle in the development of large
scale wireless network. In fact, in the point-to-point net-
work scenario, Gupta and Kumar [1] showed that the per
node throughput vanishes asO(1/

√
N), whereN is the

number of nodes in the network. Even worse scaling laws
were derived for themany-to-onenetwork scenario ofO(1/N)
[2] or O(logN/N) [3] (when applying antenna sharing).
These arguments indicate that having a large number of sen-
sors in a wireless network creates such a communication
burden that it is crucial to minimize the number of sensors
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needed. In fact, many authors suggest that a dense deploy-
ment should be avoided in sensor networks (see e.g. [2]). In
this paper we argue the opposite. We show that, if one col-
lects the distributed information to a central node with a data
driven strategy, both the communication cost and energy
consumption remain the same or decrease as the sensor den-
sity increases, provided that the sensor field has limited de-
grees of freedom in the model. This is especially important
in the sensor network application since the sensor field is
invariant to the sensor deployment. In our argument we uti-
lize data-driven multiple access protocols that we recently
proposed [4, 5] requiring a communication cost that scales
with the underlying data complexity instead of the number
of nodes in the network. Our main objective is to demon-
strate that the ‘quantity’ of the sensors (i.e. a lot of cheap
sensors with small batteries) can be effectively traded-off
with the ‘quality’ of each sensor (i.e. few, highly accurate
and critically deployed sensors with large energy supplies).
Hence, the decision on network deployment does not nec-
essarily have to favor the configuration of highly accurate
sensors deployed at the minimum needed density versus a
network crowded with cheap devices; instead, it can find
the optimum point in terms of energy between these two
extremes. The denser network is actually more versatile,
because a number of parameters necessary to calculate the
optimal deployment of highly capable nodes are not known
a-priori.

In our comparison we examine two extreme examples
of network architecture: (i) The High Density Sensor Net-
work (HDSN), where cheap sensors are deployed with high
density; (ii) The Low Density Sensor Network (LDSN),
where a small number of high resolution sensors are crit-
ically deployed at the minimum sampling points in the sen-
sor field. The comparison is done at three fundamental lev-
els: 1) the reconstruction performance attainable by the two
systems considering a simple zero-crossing detector in the
HDSN and a high precision A/D converter in the LDSN;
2) the comparison between the energy requirements for the
data collection; 3) the energy required by the hardware nec-

1



essary to implement the two architectures.
The energy efficiency of the data collection process is

discussed in two parts. First, we describe the data-driven
transmission scheduling scheme that extracts the data effi-
ciently from a large population of sensors and show that the
same reconstruction performance can be obtained by uti-
lizing the same bandwidth resources for both the HDSN
and the LDSN. Secondly, we compare in terms of transmis-
sion power where we show that the two systems have com-
parable power consumption when they utilize transmission
methods with comparable complexity.

PROBLEM SETUP

Consider a network of sensors where each sensor takes mea-
surements from a real continuous scalar field defined over
them-dimensional spatial coordinates represented by the
vectorx, and the time-dimensiont. Assume that the field is
expanded (approximately) in a finite dimensional basis,i.e.
the fieldV (x, t) is such that:

V (x, t) =

M
∑

k=1

Ckψk(x, t). (1)

whereψk(x, t), k = 1, · · · ,M is a set ofm-dimensional in-
dependent basis functions.M is effectively the number of
degrees of freedomof the sensor field. The expansion in (1)
can be valid assuming a deterministic model or can be in-
terpreted in the mean square sense for a random model. Our
goal is to reconstruct the field remotely with a certain Mean
Square Error (MSE) from a finite set of quantized measure-
ments. In Fig. 1, we illustrate a one-dimensional network
of sensors observing a smooth random signal in both space
and time as defined in (1). The grey flat plane in the figure
is the zero-plane, which highlights the zero-crossing con-
tours of the sensor field (black mesh curve). In LDSN (the
cross-headed arrows), the sensors are deployed at the criti-
cal sampling points where an accurate data representation of
each sample is transmitted to the central processor. In con-
trast, in the HDSN the sensors are densely deployed while
each sensor records only the local zero-crossing points in
time (1 bit quantization).

Sampling with infinite precision
Let D = {(xi, ti), i = 1, . . . ,K} be thereconstruction
setthat represents the set of sampled values utilized for re-
construction. Clearly, if the sensors do not move, several
samples in time are taken at the same locations in space.
(1) Explicit sampling

Let V be the vector of samples with infinite precision at
the points inD, i.e. (V)i = V (xi, ti) where(xi, ti) ∈ D.

0100010....

time

space

Central Processor

Fig. 1. Illustration of the HDSN (black points) versus the
LDSN (cross-headed points) sampling in time.

Definition 1 Suppose there existsD such that the matrix

A : (A)i,k = ψk(xi, ti), (2)

is invertible. Such a setD is defined to be a minimum recon-
struction set if and only if, for all other setsD′ that satisfy
the invertibility criterion of (2), we have|D′| ≥ |D|.

Note that aminimum reconstruction setis not neces-
sarily unique. Furthermore, among the minimum recon-
struct sets the one to be preferred is such thatA has mini-
mal condition number, which minimizes the estimation er-
ror in the presence of noisy measurements. Clearly, we have
|D| ≥ M . Denoting byC the vector of the coefficients in
(1), it is clear thatD guarantees the existence of the solu-
tion C = A†V († stands for pseudo inverse) and a perfect
reconstruction ofV (x, t) is attainable at all points using (1).
(2) Implicit sampling

The implicit sampling here refers to the dither-sampling
method proposed in [6]. In this case, the fieldV (x, t) is
represented with infinite precision at the set of coordinates

Vg = {(xi, ti) : V (xi, ti) − g(xi, ti) = 0}. (3)

whereg represents the dither function. Similar to the pre-
vious case, exact reconstruction is possible ifVg contains a
minimum subsetD ⊆ Vg as defined in Definition 1. Denote
by g the vector[g]ii = g(x, ti), it follows that

AC = V = g → C = A†g

Sampling with finite precision
In practice, the sampling cannot be achieved with infinite
precision either due to the finite levels of quantization or
because of the finite deployment of sensors. The quantiza-
tion error is on the sampled valuêV = V + EV for ex-
plicit samplingand on the level crossing time and position
p̂i = (x̂i, t̂i) = pi + τ i for implicit sampling.
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Let us assume that, with finite precision (explicit or im-
plicit) sampling, we have an estimatêC = C + EC . Thus,
the sensor field reconstruction and its MSE are respectively:

V̂ (x, t) = V (x, t) +
M
∑

m=1

[EC ]mψm(x, t), (4)

D =

∫

E
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(dx)dt = tr(ΨREC
)

(5)
whereREC

= E{ECET
C} andtr(X) is the trace of matrix

X andΨ has(m,n)-th element defined as

[Ψ]m,n =

∫

ψm(x, t)ψn(x, t)(dx)dt. (6)

Although the imprecision in the estimated coefficientEC

exists in any case, the quantization error in explicit and
implicit sampling contributes differently toEC and, con-
sequently, toD. In fact, in the case ofexplicit sampling
V̂ = V + EV and, thus:

EC = A†EV ⇒ D = tr(ΨA†REV
(A†)T ) (7)

Because the entries ofEV are in the order of the quantiza-
tion step-sizeq, it follows from (7) thatD = O(q2).

Omitting the details for brevity, in the case ofimplicit
sampling, a first order approximation of the error is:

EC = A†(Eg − EAC); (8)

[Eg]i = ∇g(xi, ti)τ i, [EA]i,m = ∇ψm(xi, ti)τ i.

Assuming that the maximum quantization-step in the coor-
dinates(x̂i, t̂i) is τ , also in this case becauseEg andEA

entries are proportional toτ , evidentlyD = O(τ2).
To streamline our discussion in the following we restrict

ourselves to the one-dimensional case where the underly-
ing sensor field is bandlimited. The same arguments can be
rephrased to handle a multi-dimensional, space and time,
sampling problem.

EQUIVALENCE OF THE RECONSTRUCTION
PERFORMANCE

When the underlying sensor field can be described by a one-
dimensional bounded functionV (x) ∈ BW

2 , whereBW
2

is the set of all bandlimited functions inL2(R) that are
bounded in frequency byW ≤ 1 without loss of gener-
ality (i.e. the Fourier TransformFV (ω) = 0 for |ω| > W
and‖V ‖2 < ∞) the basis function in (1) is thesinc ba-
sis ψm(x) = sin(π(x − m))/(x − m). TheN sensors

q

τ

Fig. 2. The illustration of the quantization resolutionq and
the zero-crossing resolutionτ .

S = {s0, · · · , sN−1} are in this simplified model deployed
in a one-dimensional network and letxi ∈ D be the location
of sensorsi such thatx0 < x1 < · · · < xN−1.
(1) Low Density Sensor Networks & Explicit sampling

In LDSN, the sensors are critically deployed with equal
spacingd = 1/2λW (i.e. the sampling period for aW -
bandlimited function with the over-sampling ratioλ > 1),
where each sensor observes the Nyquist sample, quantized
with a uniform quantizer having quantization error less than
q as shown in Fig. 2. The mean square (MS) total distortion
in this case is approximately [7]

D =
M

12λ
q2. (9)

As shown in [8], comparable reconstruction performance
can be using the knowledge of the zero-crossing points.
(2) High Density Sensor Networks & Implicit sampling

In HDSN, we assume that the distance between adjacent
sensors is less thanδ, i.e. |xi − xi+1| < δ, for δ small. By
recording the zero-crossing instants at each sensor position,
the sensors have knowledge of the sign information at the
particular snapshot in time,i.e.

V̂i = sgn[V (xi)] (10)

where sgn(y) = 1 if y ≥ 1 and sgn(y) = 0 otherwise. If
there exists two sensorssi andsj such thatV̂i 6= V̂j and
|xi − xj | < τ , then the precision of the zero-crossing point
can be obtained up toτ , as shown in Fig. 2. In this case, it
has been shown in [8] that the distortion of the zero-crossing
reconstruction is bounded deterministically as

|V (x) − V̂ (x)|2 < cvτ
2 (11)

when the crossings are obtained for a sequence of stable
sampling points [8], which provide a valid reconstruction
setD. Hence, LDSN and HDSN achieve a comparable MS
distortion performance ifq is of the order ofτ .

Note that it is necessary to choose the dithered func-
tion g(x) such that there is at least one zero-crossing point
within each Nyquist sampling period. For example, for
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Fig. 3. Long patches of zero and one in recording the sign
information of the bandlimited field.

V ∈ BW
2 and|V | < 1, the functiong(x) = γ cos(2πWλx),

whereγ > 1, is sufficient to achieve the sequence of sta-
ble sampling points [6, 9]. The reconstruction is achieved
through the inversion ofA, where the invertibility is guar-
anteed.

EQUIVALENCE OF THE COMMUNICATION
RESOURCES

We calculate the data collection cost for LDSN and HDSN
respectively as a function of the number of channel accesses
required and the total power needed to deliver the necessary
information, for equivalent reconstruction performance. To
obtain comparable communication cost in HSDN we gather
the zero crossing information using a generalized data driven
strategy for data collection known as Group Testing Multi-
ple Access (GTMA).

Group Testing Multiple Access

If V (x) is a smooth function, it is likely that large patches
of sensors in the proximity of each other will observe the
same sign information (sgn(Vi) = 0 or sgn(Vi) = 1) as
shown in Fig. 3. Because the data are highly redundant and
because we are only interested in finding one zero cross-
ing per Nyquist interval, it would be extremely inefficient
to poll each sensor individually. In GTMA, the channel as-
signed to a specific group of sensorsU ⊂ S: each sensor
in the group answers simultaneously to a query based on its
own data (in this case based onsgn(Vi)) [4]. Depending on
the query, this may require one or more channel uses. The
subclass of GTMA strategies that is effective in our prob-
lem is the so calledtree splitting strategy, where the groups
of sensors scheduled to transmit are in adjacent locations1

and the query comprises two questions (and thus two chan-
nel uses): ‘do you havesgn(Vi) = 0?’ and ‘do you have
sgn(Vi) = 1?’. When both queries receive a positive an-
swer, we have an erasuree that indicates the presence of
a zero crossing in that group. Fig. 4 illustrates the tree-
splitting strategy. GTMA queries the entire spatial Nyquist

1We assume that each sensor has hard-coded its own position when
deployed and that knows in which location it is.
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Fig. 4. The illustration of the tree algorithm by spatially
dividing the one-dimensional regions.

interval [x, x + 1/2λW ), wherex is a Nyquist sampling
point, which we call groupU00. If an “e” is observed, the
interval is adaptively divided into subintervals until a “0”
or “1” is observed. At each level of the tree, the interval
is separated into disjoint intervals having equal length. For
instance, at levelk the interval is divided into2k disjoint in-
tervals. This process locates zero-crossings using the min-
imum number of channel accesses [4] which in this case is
k = O(log 1

τ ), whereτ is the desired precision. Since it
is guaranteed by the dither function that at least one zero-
crossing point occurs within each Nyquist interval, we can
consider the first answer to be an erasure and start splitting
immediately.

In the multidimensional case, we envision the HDSN
to beactivity driven, i.e. when the information relative to
the current Nyquist interval in time and space has been col-
lected, the network falls asleep until the Nyquist interval
expires. After that, the sensors wake up and as soon as a
node records a crossing, it sends a broadcast signal which is
replicated cooperatively at the physical layer. The problem
of collisions is ruled out, because other nodes that transmit
their zero crossing information nearly simultaneously, only
reinforce the signal that initiates the GTMA.

Communication Cost of HDSN versus LDSN

In LDSN, an obvious choice for the transmission sched-
uling is to enable the critically deployed sensors to trans-
mit their encoded samples through independent channels
since the data at each sensor are non-redundant. In this case,
the number of channel accesses for each sensor is equal to
k = O(log 1

q ) when there arek levels in the quantizer,i.e.

the quantization stepq = c · 2−k wherec is a constant de-
pending on the dynamical scale of the signal or the desired
distortion at the receiver.

In the tree splitting protocol used for HDSN, only one
group of sensors is scheduled to transmit in each level of the
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tree shown in Fig. 4. Therefore, the zero-crossing point is
located within an interval of lengthτ = 2−k/2λW by using
only k number of channel accesses wherek = O(log 1

τ ).
Hence, the information required for reconstruction in both
LDSN and HDSN can be retrieved with the same number
of channel accesses.

ENERGY EFFICIENCY OF HIGH DENSITY
SENSOR NETWORKS

We consider the simple transmitter cooperation technique
proposed in [10, 11], for which the power consumption in
transmission is show to be equal in HDSN as in LDSN
and discuss a second option which is to uses beamforming,
where HDSN has a considerable gain over LDSN.

Asynchronous Cooperation for HDSN

In GTMA, the knowledge of the0, 1, e information is suf-
ficient for each sensor to determine whether or not it be-
longs to the scheduled group of sensors. We assume that the
nodes are simple pulse emitters and that in order to distrib-
ute output information throughout the network, they use the
symbol-by-symbol relay scheme proposed in [10], called
the Opportunistic Large Array (OLA) system.

Specifically, letU is the group of sensors that are sched-
uled to transmit andUb ≡ {si ∈ U : sgn(Vi) = b} ⊂ U
wheresgn(Vi) = 0, 1 is the symbol observed by sensor
si andb = 0, 1. During each transmission period, we as-
sign two independent time slots (CH0 and CH1) to the sen-
sors inU . All the sensors inU0 emit a pulsep(t) in the
channel CH0 and all the sensors inU1 emit a pulse in CH1.
Let us consider the receiver model for CH0 in the following
since the signal in CH1 performs exactly in the same way.
Initially, let each sensor inU0 emit a pulsep(t), e.g. the
mono-cycle pulse in UWB systems, to all other sensors in
the network. The signal received at sensorsi is

r
(1)
i (t) = u

(1)
i (t)+ni(t) =

∑

j:sj∈U0

√

Pj

d2
ji

p(t−dji/c)+ni(t)

(12)
wherePj is the power emitted by sensorsj , dji is the dis-
tance betweensj andsi, c is the speed of light andni(t) is
the noise at sensorsi with varianceNo/2.

Although the signal of the sensors inU0 will be received
by all other nodes, not all sensors will yield a reliable de-
tection. Using the Neyman-Pearson criterion, we define the
decision rule at sensorsi as

D(r
(1)
i (t)) = 1

{‖r
(1)
i (t)‖2≥ν}

whereν is the optimal decision threshold determined through
the given false alarm probability. If a pulse is detected in
both time slots, the output corresponds to theerasurecase
while if the pulses are detected in only one time slot, the
output corresponds either0 or 1. When the area of the net-
work is small, the emitted pulses can be received directly
from the transmitting source. If this is not the case, one
must rely on neighboring nodes to serve as relays to distant
nodes. LetL1 ≡ {si ∈ S − U0 : D(r

(1)
i (t)) = 1} be the

set of nodes that received reliably directly from the trans-
mission of the source. All the nodes in this set will then
retransmit the same pulsep(t) to all the other sensors in the
network, which will then ignite another cooperative relay
transmission by the third tier of receivers. This on-going
process will continue until all the sensors in the network are
reliably informed that there exists a sensor that observed the
bit 0, i.e.U0 is non-empty.

LetLl be the set of nodes that received sufficient signal
energy to exceedν only after the emission of nodes inU0,
L1, · · · , Ll−1. In this case, The signal received by nodes in
thel-th layer is approximately

r
(l)
i (t) ≈

∑

k:sk∈Ll−1

√

Pk

d2
ki

p

(

t− dki/c+

l−1
∑

h=1

δh

)

+ ni(t).

(13)
Not that this methods floods the HDSN with all the data that
are necessary to follow the protocol as well as informing
the remote central processor. Therefore, coordinating the
sensors and reaching the distant receiver are obtained in one
operation, at no additional cost.

The results in [11] provide the necessary conditions on
the transmitted energy to guarantee full collaboration in the
two-dimensional network that guarantee that the network
reliably detect and relay the transmitted symbol. We can
extend those arguments in the 1-D setup. We denote by
Ps the power of the source that initiates the transmission
and letPr be the power retransmission and assume that the
pulse is sufficiently narrow that their contributions can be
resolved and combined. We assume that all sensors have
the detection thresholdνc and let the path loss be defined as
1/(1+d)2.2 The result is provided for a continuum approx-
imation [11] of a dense OLA network with only one source
initiating the transmission.

Lemma 1 For a fixed detection thresholdνc, the relay trans-

2The additive constant1 in the denominator of the path loss model
guarantees that the channel gain does not go to infinity when the distance
is close to zero. However, the performance guaranteed in this scenario
will also be achievable for the case where the path loss is1/d2, since the
loss in our model decays faster with distance. Furthermore, whend is
large, we have1/d2

≈ 1/(1 + d)2.
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mission is received reliably at an arbitrarily large network
area when the sensors are distributed in continuum and if
Ps > νc and ρ > (3 + 2

√
2)νc, whereρ is the average

power emitted by the sensors located within a unit interval.

Let dc be the average distance between the sensor and the
central processor, which is common for all nodes ifdc ≫
dij for all i, j. Assume that the sensor network is confined
within the region[0, D], then the minimum power required
by each relaying node isPr = (3 + 2

√
2)νcD/(N − 1).

On the other hand, when the full network cooperates, since
it is necessary to havePtot/(1 + dc)

2 ≥ νc the required
aggregate energy isPtot = νc(1 + dc)

2. Thus, the power
emitted by each relaying sensor should be equal toPr =
[νc(1 + dc)

2 − Ps]/(N − 1), whereN is the number of
sensors in the network. In this case, if the condition

νc(1 + dc)
2 − Ps > (3 + 2

√
2)νcD

holds, the power emitted by the sensors to reach the far des-
tination will simultaneously fulfill the power requirements
to achieve sensor collaboration. By settingPs = νc (i.e. the
minimum source power) and for sufficiently largeD, the
condition is satisfied withdc > [(3 + 2

√
2)D]−1/2 which is

a reasonable distance for a central processor at a far destina-
tion. In fact, it is sufficient to havedc > D if D > 3 + 2

√
2

meters, which is a fairly small area for the deployment of
sensor networks and the problems that arise in large scale
networks would not be a concern in this scenario.
Remark— The OLA system utilized for comparison in our
paper is an asynchronous cooperation strategy which is sim-
ple requires minimum overhead for coordination and re-
duced latency due to the symbol-based relaying structure.
However, the receiver performance can be further improved
if a more sophisticated cooperation strategy is used. In the
extreme case, the sensors can be treated as a large antenna
array that performs beam-forming towards the far destina-
tion. In this case, for a high density network whereM sen-
sors are located in each Nyquist interval, the beam-forming
signal achievesM times the gain in the received signal-to-
noise ratio as opposed to having one sensor per Nyquist in-
terval in LDSN, which shows that the high density deploy-
ment can be superior to LDSN by order of magnitudes, if
the complexity of beam-forming towards the central node
was tolerable.

Energy Consumption of LDSN
In LDSN, each sensor transmits their messages to the cen-
tral processor without cooperation which requires a power
of νc(1 + dc)

2 at each sensor. Therefore, the battery at each
sensor will be depleted rapidly which would require batter-
ies with high energy density and, thus, high cost.

We should note that, in HDSN, the signals may not be
completely orthogonal as assumed previously and the fad-
ing may cause destructive interference. Nevertheless, it is
expected that in the high density network the per node en-
ergy consumption is still reduced significantly.

THE COST OF HARDWARE AND COMPUTATION

The local cost of sampling and computation for the two
mechanisms has many contributions. First, the physical
phenomenon of interest must be sensed. Assuming that the
result of the sensing process is a signal that must be dig-
itized, we estimate the cost of creating the sample as the
cost of analog-to-digital (A/D) conversion. Once the sam-
ple is created, there is an additional energy cost in convert-
ing the sample into a form suitable for communication, and
the associated protocol processing overhead associated with
different communication mechanisms. We will estimate the
algorithmic overhead of the two mechanisms assuming a
highly optimized platform for the sensor nodes [13,14].
(1) Analog-to-digital conversion

A useful figure-of-merit for A/D converters is given by
F = 2SNRbits × fsamp/Pdis, whereSNRbits is the name
conventionally used to indicate the number of bits of the
A/D converter,fsamp is the sampling frequency, andPdis

is the dissipated power. This metric combines the sampling
frequency, the precision, and the power dissipation of the
A/D converter allowing comparison across different imple-
mentations [12]. In other words, given a fixed sampling
rate and architecture, the power requirements for an A/D
should scale with the number of quantization levels. For
critically deployed LDSNs, the power required to generate
a sample will be dependent on1/q, whereq is the quan-
tization uncertainty. For the HDSN scenario with simple
zero-crossing detectors, the power requirements will be in-
dependent ofq—in fact, they should be a factor1/q lower
than the A/D converter required for the HDSN. The fre-
quency of sampling,fsamp for the LDSN deployment is
given by the Nyquist rate, and is fixed by the bandwidth
of the power spectral density of the random process in time.
For HDSN, the samples are generated in an irregular fashion
by the random zero crossings that occur. Hence, the para-
meterfsamp is replaced by the expected number of cross-
ings of the random process. For example, using the cel-
ebrated Rice’s formula, for a stationary Gaussian process
the average number of crossings is equal to1/π

√

−ρ′′(0),
whereρ(τ) is the correlation coefficient of the process. In-

terestingly,− 1
π2 ρ

′′(0) =
R
∞

−∞
4f2S(f) dfR

∞

−∞
S(f) df

. This is of the or-

der of the normalized second moment of the power spec-
tral density. The square root of this is analogous to a stan-
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dard deviation, and is a measure of the support ofS(f) in
the frequency domain. Hence, on average, the number of
crossings should be of the same order as expected given the
Nyquist rate.

The net effect is that while both schemes generate the
same number of samples, the HDSN scenario uses much
less power to generate each sample—a factor of1/q lower.
(2) Protocol overhead

The protocol overhead is a quantity that is difficult to
provide asymptotic arguments for, as it depends on the pre-
cise nature of the underlying hardware architecture. The
bulk of the power contribution is from the actual protocol
execution. For both LDSN and HDSN the number of proto-
col invocations is of the same order, because both methods
only report information when there is a non-redundant sam-
ple. The additional activity in the HDSN case comes from
the fact that more nodes are involved in relaying messages.

While for the LDSN a clocked design is the most suit-
able, for the HDSN we can assume an optimized activity-
driven computation platform where the sensor node can: 1)
efficiently sleep when it is not performing any useful work;
2) have extremely efficient transitions to/from active and
idle states; 3) have low software overhead from the oper-
ating system [14]. The SNAP/LE platform we have devel-
oped encompasses all these features and require nanowatts
of additional power to perform the computation [14]. In
a standard CMOS process, the amount of power required
when a node is sleeping is larger than a hundred nanowatts,
and therefore the minor additional energy required for re-
laying is less than the power dissipation of a sleeping node!

The net effect is that both mechanisms should require
the same amount of power for handling the communication
protocols.

THE SYSTEM VERSATILITY OF HIGH DENSITY
SENSOR NETWORKS

In the LDSN, the critical deployment of sensors at Nyquist
sampling points will limit their applications for sensor fields
that are bandlimited to frequencies lower than that of the
corresponding Nyquist sampling rate. Also, the failure of
any sensor would cause a large distortion in the signal re-
construction. Hence, the LDSN is not robust and lacks
adaptivity to different applications and to hostile environ-
ments. One may argue that redundant sensors can be de-
ployed densely in the network to introduce robustness and
that the communication congestion can be avoided by choos-
ing only the sensors at the Nyquist sampling points to trans-
mit their information. However, the high resolution sensors
utilized in the LDSN are extremely costly and it would be
wasteful to distribute these sensors in a large scale.

In contrast to the LDSN, the advantage of HDSN is its
system versatility and robustness to failure. In fact, the fail-
ure of a node will not increase the distortion as drastically as
that of LDSN. Furthermore, if the density of the nodes are
sufficiently high. One can simply increase the number of
channel access to increase the precision of the zero-crossing
position as illustrated in the tree splitting algorithm. Sim-
ilarly, one can increase the number of channel accesses to
retrieve additional zero-crossing points, adjusting to the fre-
quency of the sensor field. Therefore, the network configu-
ration is invariant to the application at hand.
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