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We present two novel energy-efficient pipeline templates for high throughput asynchronous circuits. The
proposed templates, called N-P and N-Inverter pipelines, use single-track handshake protocol. There are
multiple stages of logic within each pipeline. The proposed techniques minimize handshake overheads asso-
ciated with input tokens and intermediate logic nodes within a pipeline template. Each template can pack
significant amount of logic in a single stage, while still maintaining a fast cycle time of only 18 transitions.
Noise and timing robustness constraints of our pipelined circuits are quantified across all process corners. A
completion detection scheme based on wide NOR gates is presented, which results in significant latency and
energy savings especially as the number of outputs increase. To fully quantify all design trade-offs, three
separate pipeline implementations of an 8x8-bit Booth-encoded array multiplier are presented. Compared
to a standard QDI pipeline implementation, the N-Inverter and N-P pipeline implementations reduced the
energy-delay product by 38.5% and 44% respectively. The overall multiplier latency was reduced by 20.2%
and 18.7%, while the total transistor width was reduced by 35.6% and 46% with N-Inverter and N-P pipeline
templates respectively.
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1. INTRODUCTION
The scaling of CMOS technology into ultra-deep sub-micron range has posed some se-
rious challenges for digital circuits designers. With the transistor threshold voltage
fixed [Horowitz 2007], VDD has been scaling very slowly if at all, which means all
performance improvements come at an increased energy consumption. Hence, it is of
no surprise that power has become a major design constraint in modern chip design.
Furthermore, process variations in deep sub-micron range have made devices far less
robust, which is increasingly making it difficult for synchronous designers to overcome
the problems associated with clock skew rates and clock distribution [Dally and Poul-
ton 1998].
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Asynchronous quasi-delay-insensitive (QDI) circuits, with their robustness to pro-
cess variations, no global clock dependence, and inherent perfect clock gating, rep-
resent a highly feasible design alternative for future chip design. The QDI circuits
have been used in numerous high-performance, energy-efficient asynchronous de-
signs [Sheikh and Manohar 2010] [D. Fang and Manohar 2005], including a fully-
implemented and fabricated asynchronous microprocessor [Martin et al. 1997].

QDI circuits lose some of their energy efficiency gains in implementing handshakes
between different parallel pipeline processes. To ensure QDI behavior for each hand-
shake, every up and down transition within a pipeline is sensed, which leads to signif-
icant handshake circuitry and energy overhead. High throughput QDI pipelines only
include a small amount of logic in each stage. The large number of pipeline stages
required for high throughput make the handshake overhead a significant proportion
of the total power consumption. In this work, we try to improve the energy efficiency
of high performance asynchronous pipelines but without sacrificing robustness. To cir-
cumvent the problem of high handshake overhead, we present two novel pipeline tem-
plates, which greatly minimize the handshake circuitry by taking advantage of some
easily satisfiable timing assumptions. Our proposed pipelines use single-track hand-
shake protocols [van Berkel and Bink 1996]. Logic density is enhanced by packing
multiple logic stages in a single pipeline, while still maintaining a very fast cycle time
of 18 transitions.

To quantify actual performance and energy efficiency of our proposed pipeline tem-
plates, three separate pipeline implementations of an 8x8-bit booth-encoded array
multiplier are presented. Compared to a standard QDI pipeline implementation, our
proposed pipeline implementations reduced the energy-delay product by 38.5% and
44% respectively. The overall multiplier latency was reduced by 20.2% and 18.7%,
while the total transistor width was reduced by 35.6% and 46% with the use of our
newly proposed N-Inverter and N-P pipeline templates respectively.

The rest of the paper is organized as follows. Section 2 provides an overview of
fine-grain asynchronous pipelines and their limitations. Section 3 discusses ways to
improve the energy efficiency of fine-grain pipelines. In Section 4, we introduce two
novel energy-efficient pipeline templates based on single-track handshake protocol
and multi-stage logic. We also discuss an alternative energy-efficient completion de-
tection scheme. Section 5 presents an in-depth analysis of various design trade-offs
associated with our proposed templates. It also quantifies the noise and timing mar-
gin constraints of our circuits across all process corners. Section 6 gives a detailed
description of an 8x8-bit booth-encoded array multiplier implementation and provides
a comprehensive evaluation of our proposed pipeline templates using experimental
results.

2. ASYNCHRONOUS PIPELINES
High performance asynchronous circuits are composed of many parallel processes. As
opposed to synchronous circuits, which use a global clock to synchronize data tokens
between different pipeline stages, these asynchronous parallel processes use hand-
shake protocols to communicate with each other. These parallel processes are often
referred to as fine-grain pipelined circuits. The fine-grain pipelined circuits use de-
signated channels for communication between processes. A channel comprises a bun-
dle of wires and a communication protocol to transmit data from a sender to a re-
ceiver. There are numerous asynchronous fine-grain pipeline implementations [Lines
1995] [Williams 1991] [Sutherland and Fairbanks 2001] [Ferretti and Beerel 2002]. A
robust family of these circuit templates is referred to as quasi-delay-insensitive (QDI)
circuits.
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2.1. Quasi-Delay-Insensitive Circuits
QDI circuit templates use 1-of-N encoded channels to communicate between different
parallel processes. In an 1-of-N channel, a total of N wires is used to encode data with
only one wire asserted at a time. Most high throughput QDI circuits either use 1-of-2
(dual-rail) or 1-of-4 encodings. In an 1-of-4 encoded channel communication as shown
in Figure 1, validity is signified by setting one of the four data rails and neutrality is
indicated by resetting of all four data rails. In a four phase handshake process, which
is commonly used in most high speed QDI circuits, the sender process initiates the
communication by sending data over the rails i.e. by asserting one of the data rails.
The receiver process detects the presence of data and sends an acknowledge once it no
longer needs the data. At this point, the sender process resets all its data rails. The
receiver process detects the neutrality of input tokens. It de-asserts the acknowledge
signal once it is ready to receive a new data token. The cycle repeats.

Fig. 1. Asynchronous pipelines: sender-receiver handshake protocol.

2.1.1. Pre-Charge enable Half-Buffer. The pre-charge enable half-buffer (PCeHB) [Fang
and Manohar 2004] template, which is a slightly modified version of pre-charge half-
buffer (PCHB) template proposed in [Lines 1995] [Williams 1991], is a workhorse for
most high throughput QDI circuits. It is both small and fast with a cycle time of 18
transitions. In a PCeHB pipeline, the logic function being computed is implemented
by a pull-down NMOS stack. The input and output validity and neutrality are checked
using separate logic gates. The actual computation is combined with data latching,
which removes the overhead of explicit registers.

A PCeHB template can take multiple inputs and produce multiple outputs. Figure 2
shows a simple two input and one output PCeHB template. L0 and L1 are dual-rail
inputs to the template and R is a dual-rail output. A PCeHB template has a forward
latency of two transitions. Each pipeline stage computes logic by using a NMOS pull-
down stack followed by an inverter to drive the output.

To understand the cycle time of 18 transitions in a PCeHB template, let us assume
two PCeHB pipelines in series with time (t) increments taken in terms of logic transi-
tions.

— At t = 0, input tokens arrive at the first PCeHB pipeline block.
— At t = 2, first pipeline block produces its output.
— At t = 4, second pipeline block produces its output.
— At t = 5, L.e in the first block goes low.
— At t = 7, L.e in the following block, which is the R.e of the first block, goes low. This

indicates that the output from the first pipeline block is no longer needed and can be
reset.

— At t = 9, en signal in the first block is de-asserted.
— At t = 10, R rails in the first block are pre-charged.
— At t = 11, output, R, rails of the first block are reset.

ACM Journal on Emerging Technologies in Computing Systems, Vol. , No. , Article A, Pub. date: December 2011.



A:4 B. R. Sheikh and R. Manohar

Fig. 2. A two input and one output PCeHB template.

— At t = 12, R rails in the second block are pre-charged.
— At t = 14, L.e in the first block goes high.
— At t = 16, L.e in the second pipeline stage goes high. This indicates the neutrality of

the inputs in the second pipeline stage.
— At t = 18, en is set in the first pipeline block, which indicates that the pipeline is

ready to accept new input tokens and compute a new output.

The highlighted logic gates in Figure 2 are not used for the actual computation but
are only required for the handshake protocol. This includes the generation of comple-
tion detection signal (L.e) as well as the en signal that is used to enable computation
or latching in the pipeline stage. As the number of inputs into a PCeHB pipeline stage
increases, the input validity tree becomes more complex and may require extra stages
to compute, which leads to an increase in the cycle time. The same holds true as the
number of outputs increase. Hence, for high-througput circuits each PCeHB stage con-
tains only a small amount of logic with only a few inputs and outputs. This leads to
significant handshake overhead, in terms of power consumption and transistor count,
as tokens may have to be copied for use in separate processes with each process doing
its own validity and neutrality checks.

Table I shows the power consumption breakdown of a simple full-adder circuit im-
plemented using a PCeHB template. Only 31% of the total power is consumed in the
actual logic, while the rest is spent in implementing the handshake protocol. This is a
significant power overhead, which gets worse as the complexity of PCeHB templates
increases with more inputs and outputs. The result in Table I was one of the main mo-
tivating factors that prompted us to consider alternative pipeline solutions with less
handshake circuitry.

2.2. Fine-grain bundled-data pipelines
The fine-grain bundled-data pipelines have an instant area advantage over the
QDI pipelines because of their use of single-rail encoded data channels [Sutherland
and Fairbanks 2001]. However, the bundled-data pipelines include far more timing

ACM Journal on Emerging Technologies in Computing Systems, Vol. , No. , Article A, Pub. date: December 2011.



Energy-Efficient Pipeline Templates for High-Performance Asynchronous Circuits A:5

Table I. PCeHB full-adder
pipeline: power breakdown.

Circuit Power
Logic 31%

Handshake 69%

assumptions than QDI circuits which makes them less robust. The bundled-data
pipelines contain a separate control circuitry to synchronize data tokens between dif-
ferent pipeline stages. The control circuitry includes a matched delay line, the delay
of which is set to be larger than that of the pipeline’s logic delay plus some margin.
In [Sutherland and Fairbanks 2001], for correct operation, the designer has to ensure
that the control circuit delay satisfies all set-up and hold time requirements just like in
synchronous design. Since our goal was to design pipeline templates with robust tim-
ing and with forward latency similar to that of precharged logic, we did not consider
any bundled-data pipeline implementations in our work.

3. IMPROVING ENERGY EFFICIENCY OF FINE-GRAIN PIPELINES
QDI circuits are robust since each up and down transition within a QDI pipeline tem-
plate is sensed. But this robustness comes at the cost of significant power consumption
in pipeline handshake circuitry as shown in Table I. The high handshake overhead is
one of the serious constraints hampering the wide-range adoption of QDI circuits es-
pecially for logic operations with a large number of input and output signals, such as
a 32-bit multiplier.

In this work, we try to improve the energy efficiency of high performance asyn-
chronous pipelines but without sacrificing robustness. To this end, we kept the fol-
lowing objectives for our resulting pipeline templates:

— Keep the cycle time of each stage within 18 transitions.
— Increase the ratio of logic to handshake. The handshake power overhead must ac-

count for less than 50% of total pipeline power.
— No increase in the total transistor count is allowed.
— All timing assumptions are either isochronic fork assumption [Martin 1990] or have

at least the same timing margin as the half-cycle timing assumption [LaFrieda and
Manohar 2009] according to which the difference in number of transitions between
any two delay races must be at least 4.5 transitions.

— Stalls on input and output should not impact correct operation.

We envision these circuits being used for large chunks of local logic (e.g. a multiplier)
wrapped with QDI interfaces, rather than globally.

In the past, researchers have tried to increase the logic density of QDI pipelines by
adding extra logic stages [Beerel et al. 2009], but this still does not yield the desired
reduction in the handshake overhead and leads to an increase in cycle time. To analyze
this effect, let us suppose we increase the logic depth of a pipeline by adding extra logic
stages. To conform to QDI behavior, the up and down transitions of all newly-created
internal signals must be acknowledged. This can be done either by explicitly checking
for each transition using completion detection logic as is done in the PCeHB template
or using weak conditions [Seitz 1980] i.e. the output being valid implies that the input
is valid (checked by additional n-fets in the logic stack), and the output being neutral
implies that the input is neutral (checked by additional p-fets in the logic stack). The
limitations of weak conditions for performance are elaborated in [Seitz 1980] [Lines
1995]. In the case of explicit checking, there is the associated high handshake overhead
because of all the extra validity and neutrality detection logic gates. All these extra
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transitions associated with the newly added logic stages and completion detection logic
gates limit energy efficiency gains.

There is clearly a need to look beyond just adding extra logic stages to each pipeline
stage. To improve the energy efficiency of high throughput asynchronous pipelines, we
look at alternative handshake protocols as well as some timing assumptions in QDI
circuits.

3.1. Four phase handshake vs. Single-track handshake
In a four phase handshake protocol, the pipeline stage needs to detect the validity and
the neutrality of both inputs and outputs. During the second half of the four-phase
protocol when the pipeline is waiting for inputs and outputs to be reset, no actual logic
is being computed but it still consumes roughly half of the cycle time. Furthermore, the
power consumed in detecting the neutrality of inputs and outputs rivals that consumed
during their validity detection. Due to these characteristics, the four phase handshake
protocol is clearly not an ideal choice for energy efficiency.

Single-track handshake [van Berkel and Bink 1996] protocol tries to overcome this
weakness of four phase protocol by practically eliminating the neutrality phase. Fig-
ure 3 shows an overview of a single-track handshake protocol. The sender process
initiates the communication by sending the data token. The receiver uses the data for
computing its logic. Once the data is no longer needed, instead of sending an acknowl-
edge signal back to the sender process, the receiver process resets the input tokens
itself by pulling the data wires low through NMOS transistors as illustrated in Fig-
ure 3. There are as many NMOS discharge transistors as there are data wires, but
for simplicity we show only one discharge transistor in Figure 3. As the data wires
pulled low, the sender detects the token consumption and gets ready to send the next
token. Hence, eliminating the transitions associated with second part of the four phase
protocol.

Fig. 3. Single-track handshake protocol.

There has been very limited work on single-track handshake templates. Most of the
prior work has focused on using single-track handshake protocol to reduce the cycle
time of asynchronous pipelines to less than 10 transitions and not on how to use these
extra transitions to improve logic density and energy efficiency. Ferretti et al[2002]
provide a family of asynchronous pipeline templates based on single-track handshake
protocol. Just like high throughput QDI circuits, each of their pipeline templates con-
tains only a small amount of logic. Furthermore, their 6-transition cycle time pipelines
use some very tight timing margins that may require significant post-layout analog
verification. Single-track circuits have been used in the control path of GasP [Suther-
land and Fairbanks 2001] bundled-data pipelines. However, the actual data path of the
pipeline does not use a single-track handshake protocol.
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We employ single-track handshake protocol for our proposed pipeline templates.
However, our design effort focuses on increasing the logic density and energy efficiency
of each pipeline stage and not on reducing cycle time.

3.2. Relative Path Timing Assumption
QDI circuits are highly tolerant of process variations as each transition within a QDI
pipeline is sensed. The isochronic fork assumption [Martin 1990], which states that
the difference in delay between branches of a wire is insignificant compared to the
gate delays of the logic reading their values, is the only timing assumption allowed in
QDI design. Recently, LaFrieda et al [2009] exposed another timing assumption that
is quite commonly used in QDI implementations, which they named as the half cycle
timing assumption (HCTA). According to HCTA, the difference in number of transi-
tions between any two delay races must be at least 4.5 transitions for PCeHB-style
templates. The resulting templates are referred to as Relaxed QDI templates and are
shown to be quite robust.

LaFrieda et al [2009] exploited HCTA to improve energy efficiency of their four phase
handshake protocol pipelines. In this work, we look to improve energy efficiency of
single track handshake protocol pipelines by introducing timing assumptions with a
margin of at least 5 gate transitions between any two relative delay races.

4. HIGH THROUGHPUT ENERGY-EFFICIENT PIPELINE TEMPLATES
4.1. N-P and N-Inverter Pipeline Templates
We use single-track handshake protocol for our proposed pipeline templates. Figure 4
shows a semi detailed depiction of our first proposed template with 5 arbitrary dual-
rail outputs indicated by signals R0 to R4. We have named the template N-P pipeline
since it computes logic using NMOS pull-down and PMOS pull-up stacks. Each NMOS
and PMOS stage can comprise multiple logic stacks. However, for simplicity, we do not
show multiple logic stacks and global reset signals.

A PCeHB template has two logic stages per each pipeline, with the second logic stage
comprising an inverter to drive the output rails. Hence, there is only one effective logic
computation per pipeline block. In contrast, the N-P template has N arbitrary stages
of actual logic computations. However, for ease of explanation and to keep cycle time
within 18 transitions, we use N-P pipelines with four stages of logic. In the reset state,
the NMOS logic nodes in the pipeline are precharged, whereas the PMOS logic nodes
are pre-discharged. Each state-holding gate includes a staticizer, which comprises a
keeper and a weak feedback inverter, to ensure that charge would not drift even if the
pipeline were stalled in an arbitrary state. The staticizers, drawn as two cross-coupled
inverters, for the intermediate as well as the final output nodes are shown in Figure 4.

When 1-of-N encoded input tokens arrive, logic is computed in the first stage by
pulling down the precharged nodes. This is similar to how logic is computed in QDI
templates. We limit the number of series transistors in an NMOS stack to a total
of four. The second logic stage uses a stack of PMOS transistors to compute logic by
pulling up the pre-discharged nodes. As the PMOS transistors have slower rise times,
for throughput purposes we limit the number of series transistors in a PMOS stack
to a total of three (including the enable). As the output nodes from the second stage
pull up, the pull-down stacks in the third stage get activated and compute logic by
pulling down their output nodes. Finally, the fourth stage computes logic by using its
pull-up stack of PMOS transistors. The four cascaded stages of logic in our pipeline are
similar to cascaded domino logic but without any static inverters in between dynamic
logic stages.
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Fig. 4. N-P pipeline template

There are no explicit validity detection gates for the arriving input tokens nor for
any intermediate outputs that are being produced. AckPrevious (explained later in this
section) signifies the validity of input tokens into the pipeline and alleviates the need to
explicitly check for validity. For intermediate outputs produced and consumed within
the template, validity must be embedded in a pull-up or pull-down logic stack that
uses the intermediate output to compute the following stage logic output. This could
incur additional cost, depending on the function being implemented. However, for a
logic stack inherently embedded with input validity, for example a stack that computes
the sum of two inputs, there is zero validity detection overhead. The elimination of
explicit validity detection gates for input tokens and intermediate output nodes leads
to considerable power savings and minimization of handshake overhead.

There is an explicit completion detection logic for all the outputs that eventually
leave the pipeline, either at the end of the second stage or the fourth stage. The com-
pletion detection of the final outputs automatically signifies the validity of all inter-
mediate outputs as well as that of all the initial input tokens into the N-P pipeline.
The completion detection logic comprises a set of NOR gates and a c-element tree as
shown in Figure 4. Each of the c-element gates includes a staticizer in parallel. These
staticizers are not shown for simplicity. The outputs from the NOR gates are combined
using a c-element tree which de-asserts the Ack signal once all outputs are valid. This
leads the discharge signal to go high, which initiates the reset of all input tokens. The
discharge signal is only set for a short pulse duration. The de-asserted Ack signal also
sets the enP signal to high which discharges all pull-up nodes in logic stage two. The
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enN signal is set low, which precharges all pull-down nodes in logic stages one and
three. Since the neutrality of the internal nodes is not sensed, we introduce a timing
assumption on their transition. The discharge of input tokens with a short pulse sig-
nal introduces another timing assumption. These two timing assumptions entail the
following constraints:

— The pull-down nodes must be fully precharged before enN goes high and pull-up
nodes must be fully discharged before enP transitions low. This translates into a race
condition of 1 pull-up/pull-down transition versus 9 gate transitions, the minimum
transition count before both enN and enP flip when two N-P pipelines are in series.

— All input tokens must be fully discharged within the short pulse discharge period.
The pulse has a minimum period of 5 gate transitions. There are as many NMOS
discharge transistors as there are input data rails.

The robustness of our pipeline template is not compromised as these timing assump-
tions satisfy the minimum timing constraint of at least 5 gate transitions between any
two relative path delay races.

The discharge of any of the outputs before the validity of all other outputs has been
acknowledged can permanently stall the pipeline. To analyze this effect, let us suppose
we have three N-P pipelines A, B, and C as shown in Figure 5. A produces two outputs,
one of which goes to B and the other one to C. B uses the output from A to compute
its output. Since B has computed its output, it can now discharge the input it received
from A. If A’s other output, which is headed for C, is not yet produced or acknowledged
by the completion detection logic of A, then B’s discharge of its input will make the
completion detection logic of A unstable. To prevent this, we add the AckNext signal
to our pipeline template. It is sent to all following pipeline stages that consume the
outputs from the current N-P pipeline. This signal is referred to as AckPrevious in
the destination pipeline as shown in Figure 4. It prevents the discharge of the tokens
coming from the sender stage before the validity of all outputs in the sender has been
acknowledged. As mentioned earlier, AckPrevious also signifies the validity of input
tokens into the pipeline, hence alleviating the need to check for input token validity in
NMOS pull-down stacks. In the case where inputs come from more than one pipeline
block, the AckPrevious signals from all corresponding pipeline blocks need to be added
to the completion detection logic to ensure against any premature discharge of input
data rails.

Fig. 5. Ack signals to ensure correctness

Forking of an output to two successors is also not allowed because then the two
successors can reset (discharge) the connection at different times, which could lead to
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potential conflicts. Hence, we need to create explicit duplicate outputs in the last logic
stack for each output that goes to multiple destinations.

To determine the cycle time of the proposed N-P pipeline, let us assume two N-P
pipelines in series with time (t) increments taken in terms of logic transitions.

— At t = 0, input tokens arrive at the first pipeline block.
— At t = 4, first pipeline block produces its output.
— At t = 7, Ack signal in the first block is de-asserted which signifies the validity of all

output signals
— At t = 8, second pipeline block produces its output.
— At t = 9, input tokens in the first pipeline block are discharged. Internal PMOS logic

nodes are discharged.
— At t = 10, NMOS logic nodes in the first pipeline are precharged.
— At t = 13, output tokens from the first pipeline block are discharged by the second

pipeline.
— At t = 16, Ack signal in the first block is asserted which signifies the reset of all output

signals.
— At t = 18, enN is set and the pipeline is ready to accept new input tokens.

Hence, our proposed N-P pipeline has a cycle time of 18 transitions. Stalls on inputs
and outputs do not impact correct operation. The template waits in its present state if
inputs arrive at different times. This holds true for outputs being computed at different
times as well. The relative path delay assumption has a root, Ack, which only changes
after all inputs have arrived and all outputs have been computed. As a result, correct
operation is not a function of arrival time of signals, which makes the N-P template
quite robust.

We could invert the senses of the inputs and outputs by changing the order of the
logic stacks within N-P pipeline. With inverted inputs, the first stage comprises PMOS
logic stacks and the final logic stage comprises NMOS logic stacks with the outputs
produced in inverted sense. This could improve the drive strength of the output signals
especially in the case of high fan-out.

Our second proposed pipeline template replaces the PMOS pull-up logic stacks in
stage 2 with an inverter, hence the name N-Inverter template, and includes only a
single pull-up PMOS transistor in stage 4 as shown in Figure 6. As PMOS logic stacks
have slower rise times and relatively weak drive strength, the N-P template cycle
time may incur a performance hit. The N-Inverter template addresses this by using
inverters with faster switching time and strong drive strength . It also results in better
noise margins as discussed in detail in Section 5. However, these improvements come
at the cost of reduced logic density as stage 2 and 4 no longer perform any effective logic
computation. Despite these alterations, the N-Inverter and N-P templates use exactly
the same timing assumptions. The completion detection and handshake circuitry is
also identical.

4.2. Completion detection logic for large number of outputs
Since N-P and N-Inverter pipeline templates can pack significant logic in a single
pipeline block, there may be cases where a pipeline block has quite a large number
of outputs. To detect the validity of these large number of outputs, we may have to
expand the c-element validity tree by a couple of extra stages as shown in Figure 7.

As a result of these two extra stages in the completion detection validity tree, the
cycle time of N-P and N-Inverter templates is no longer 18 transitions. There are four
extra transitions, two each for the validity and neutrality detection of the output sig-
nals, which increases the cycle time to 22 transitions. Since our goal was to keep the
cycle time within 18 transitions, we explored a number of other completion detection
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Fig. 6. N-Inverter pipeline template

circuits [Schuster and Cook 2003] [Cheng 1998]. To reduce the cycle time back to 18
transitions, we use wide NOR gates based completion detection circuitry as proposed
in [Cheng 1998], but with a couple of optimizations to make the circuitry feasible for
our proposed pipeline templates. These optimizations include the use of only one out-
put from the set of outputs destined for the same next pipeline block for neutrality
detection and the addition of enP and enN transistors in the pull-up stacks of DONE
and RST circuits as seen in Figure 8. These optimizations and their benefits are out-
lined in detail towards the end of this section.

The Ack signals are generated using static NOR gates as previously. The validity of
the outputs is signaled by the setting of Done. To ensure that the Done signal is only
set once all Acks have gone low, the pull-up path resistance of the Done circuit is set
to be at least 4 times as big the pull-down path resistance when only one pull-down
transistor is conducting. To prevent a direct path between VDD and GND, the Ack
from one of the latest (slowest) outputs is used in the pull-up stack.

The RST signal is used to sense the reset of all outputs. The various R.t and R.f
signals correspond to the actual dual-rail outputs being produced. The latest (slowest)
signal to reset is put in the pull-up stack. The pull-up path resistance of the RST
circuit is set to ensure that it only goes high once all pull-down transistors in the RST
circuit have turned off i.e. all output signals have reset. The RST circuit has two pull-
down transistors for each dual-rail output and four pull-down transistors for each 1-of-
4 output. As the number of outputs increase, the RST rise time suffers significantly.
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Fig. 7. Multi-stage c-element tree completion detection logic for large number of outputs

Fig. 8. Completion detection logic for large number of outputs

A close inspection of our proposed pipeline templates made us realize that for outputs
destined for the same pipeline block, we only need to check for the reset of one of the
outputs and not all because they use the same discharge pulse. Let us assume the
dual-rail outputs R0 to R3 are all headed for the same pipeline block. We minimize
the RST circuit by only using pull-down transistors corresponding to R0 output. The
transistors corresponding to R1, R2, and R3 dual-rail outputs are eliminated as shown
in Figure 8.
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The addition of enP and enN transistors in the pull-up stacks of DONE and RST
circuits was another optimization we introduced. The enP signal cuts off the pull-up
path in the DONE circuit while the pipeline is waiting for the outputs to be reset. This
prevents the occurrence of a direct path between VDD and GND if any of the Acks
other than Ackslow goes high first. Similarly, the introduction of enN in the pull-up
stack of RST cuts off the direct path between VDD and GND during the evaluation
phase.

5. DESIGN CONSIDERATIONS AND ROBUSTNESS TRADE-OFFS
5.1. Completion Detection Circuits
To quantify the trade-offs between the two completion detection schemes, we carried
out detailed SPICE level simulations with estimated wire loads for each node. It is
assumed that each output goes to a separate pipeline block, hence the discharge of
each signal is checked. The wide NOR completion detection circuitry results in lower
latency relative to multi-stage c-element tree detection completion scheme across a
wide range of outputs as shown in Figure 9. The latency difference increases as the
number of outputs increases since c-element completion may require multiple extra
stages. For 15 output signals, the wide NOR completion results in 30% less latency.

Fig. 9. Latency comparison of completion detection schemes

In terms of energy consumption, the choice of a completion detection scheme depends
not only on the number of outputs but also on the arrival order and the delay of the
chosen latest signal as shown in Figure 10. The x-axis corresponds to the arrival order
of the chosen latest signal. For example, the data point corresponding to the arrival or-
der of 9 means that our chosen latest output was the ninth output to be set or reset. All
of the remaining signals arrived after an arbitrary 2-FO4 delay. This corresponds to a
period of direct path between VDD and GND for wide NOR based completion detection
scheme. The c-element based completion scheme consumes the same energy irrespec-
tive of the arrival order. It is also more energy-efficient when the number of outputs is
9 or less. However, with a greater number of outputs as may be required for some N-P
and N-Inverter pipeline templates, the wide NOR based completion detection scheme
consumes significantly less energy. Another noteworthy observation from Figure 10 is
that the effect of arrival order on energy consumption is only profound when the latest
signal is one of the last few signals.
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Fig. 10. Completion detection energy consumption for different arrival order of chosen signal

The longevity of the period of direct path between VDD and GND, when the cho-
sen latest signal is the not the last one, may lead to significant energy consumption
for wide NOR based completion detection scheme. To explore this effect, we simulated
wide NOR completion circuits for 12 and 15 outputs by varying the delay of late ar-
riving signals as seen in Figure 11 and Figure 12. For 12 outputs, unless any output
arrives 3 or more FO4 delays after the chosen latest signal, the wide NOR completion
consumes less energy compared to the c-element based completion scheme, irrespec-
tive of the arrival order of the latest signal. For 15 outputs, the margin increases to 5 or
more FO4 gate delays for the wide NOR completion to consume more energy than the
corresponding c-element based completion detection scheme. These results indicate
that the energy consumption of the wide NOR completion scheme is largely a func-
tion of delay between the chosen latest signal and the actual last signal. In the case
of small delay variability between outputs produced within the same pipeline block,
for example most arithmetic operations, the wide NOR scheme consumes less energy
per operation than its c-element tree counterpart. In the unusual scenario of large de-
lay difference between outputs within the same pipeline, the wide NOR scheme still
functions correctly, albeit at higher energy consumption.

Fig. 11. C-Element vs WideNOR for 12-outputs with varying delay of latest signal

In terms of transistor area, the wide NOR completion detection circuit becomes more
efficient as the number of outputs increase as seen in Figure 13. The choice of a par-
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Fig. 12. C-Element vs WideNOR for 15-outputs with varying delay of latest signal

ticular completion detection circuit is therefore a design choice, which may depend on
a number of factors: the number of outputs for a pipeline stage, latency and through-
put targets, power budget, area constraints, and the delay variability of chosen latest
output.

Fig. 13. C-Element vs WideNOR: total transistor width comparison

5.2. Throughput, Energy, and Area Trade-offs
Throughput, energy, and area are critical design considerations for a circuit designer.
We choose an 8-to-1 multiplexor design, which produces multiple copies of the out-
put as shown in Figure 14, to highlight some of these trade-offs in our proposed tem-
plates. PCeHB, N-P, and N-Inverter pipelined versions of the chosen circuit were im-
plemented. Highest precision SPICE simulations were conducted in 65nm bulk CMOS
process with estimated wire loads for each node.

Although, all three templates have a cycle time of 18 transitions, the N-P implemen-
tation results in an 8.5% lower throughput. The N-P implementation is slower because
it employs some logic computations in PMOS stacks, which have slower slew rates and
weaker drive strength than NMOS stacks. In a PCeHB implementation, each 2-to-1
multiplexor represents a separate pipeline stage with each stage incurring a signifi-
cant handshake overhead as seen earlier in Table I. There is a separate pipeline block
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Fig. 14. 8-to-1 multiplexor with 2 copies of Output

for copy logic as well. Whereas, in N-P and N-Inverter implementations, the full 8-
to-1 multiplexor circuit including copy logic can be packed completely in one and two
pipeline blocks respectively. The effect of this logic compaction on energy efficiency and
total transistor width is quite profound. Our N-Inverter implementation, operating at
the same throughput as a PCeHB design, consumed 52.6% less energy per operation
while using 48% less transistor width. With N-P pipeline, the energy and transistor
width savings shoot up to 71.2% and 65% respectively, albeit at an 8.5% throughput
penalty.

Fig. 15. 8-to-1 multiplexor design trade-offs for different pipeline styles

The proposed N-P and N-Inverter templates enable us to pack more logic computa-
tions within a single pipeline stage while maintaining a very high throughput. This
flexibility is not available in standard PCeHB designs, which are composed of pipeline
stages with only one effective logic computation in a single stage. More logic per a sin-
gle stage in our proposed templates creates a likelihood of a large number of outputs
per pipeline, which may adversely affect overall throughput as shown in Figure 16. The
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dependency of absolute throughput on the number of outputs highlights an important
design trade-off. With more outputs, although the number of transitions remain the
same with the use of a wide NOR completion detection logic, each of these transitions
incur a higher latency as shown earlier in Figure 9. The results would be even worse if
a c-element based completion logic was used as it would incur 4 extra transitions per
each cycle.

Fig. 16. Throughput dependency on the number of outputs

5.3. Noise Analysis
Noise feedthrough is one of the major concerns when it comes to the use of dynamic
gates. Since our proposed pipeline templates use cascaded dynamic gates for logic com-
putations, we carried out comprehensive noise margin analysis of our circuits. Dy-
namic gates from each pipeline template were simulated across all process corners,
typical-typical (TT), slow-fast (SF), fast-slow (FS), slow-slow (SS), and fast-fast (FF),
in a 65nm bulk CMOS technology with highest-precision SPICE configuration at 1V
nominal VDD and 85◦C operating temperature. Since SPICE simulations do not ac-
count for wire capacitances, we included additional wire load in the SPICE file for
every gate in the circuit. For each pipeline template, the lowest value of noise margin
amongst all process corners was chosen.

For noise feedthrough analysis of N-P template, we analyzed a full-adder NMOS
logic stack followed by a two-input AND gate in a PMOS pull-up stack. The noise
margin, as defined in [Weste and Harris 2004], of this cascaded N-P configuration is
the difference in magnitude between the minimum low input voltage recognized by
NMOS logic stack on one of the inputs at unity gain point and maximum low output
voltage of the driving PMOS pull-up stack. For N-Inverter and PCeHB templates, we
analyzed a full-adder NMOS logic stack followed by a static CMOS inverter, with noise
margin defined as the difference in magnitude between the minimum low input voltage
recognized by NMOS logic stack on one of the inputs and maximum low output voltage
of the driving output inverter. The results are shown in Figure 17 which also shows
the noise margin of a two-input static CMOS NOR gate for comparison.

The N-P template has the lowest noise immunity. However, the noise margin can
be significantly improved by increasing the relative drive strength of the staticizers to
dynamic logic stacks. But this improvement comes at the cost of throughput degrada-
tion and a slight increase in energy per operation as shown in Figure 18 and Figure 19
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Fig. 17. Noise margin analysis

respectively. The energy per operation results are normalized to a PCeHB implementa-
tion energy per operation at a staticizer strength of 0.1. As seen from these results, the
choice of an exact strength value for a staticizer represents a design trade-off, which
should be made on the basis of final throughput target, desired robustness, as well as
circuit application.

Fig. 18. Effect of staticizer strength on pipeline throughput

Fig. 19. Effect of staticizer strength on energy/op
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5.4. Timing Margin
The N-P and N-Inverter pipeline templates include multiple timing assumptions, the
breach of which could impact correct operation or stall the pipeline. In Section 4,
we discussed the timing margins necessary to ensure correctness, but these timings
margins were given in terms of gate transitions. To ensure sufficient robustness of
our templates, we analyzed the exact timing constraints of full transistor-level imple-
mentations of our proposed pipelines in a 65nm bulk CMOS technology with highest-
precision SPICE configuration at 1V nominal VDD, 85◦C operating temperature, and
estimated wire loads for each gate. The timing constraint of 9 gate transitions for
precharge and discharge of internal nodes translated into 14.8 FO4 and 12.2 FO4 de-
lays for N-P and N-Inverter pipelines respectively, whereas the worst case transition
corresponding to precharge or discharge of an internal node took no longer than 2.67
FO4 delays. This yields a very safe timing margin of over 12 FO4 and 9.5 FO4 delays
for N-P and N-Inverter pipelines respectively.

The second timing assumption in the N-P and N-Inverter pipelines pertains to the
full discharge of all input tokens within the short pulse discharge period. The 5 tran-
sition discharge pulse translates into 5 FO4 delays for both N-P and N-Inverter tem-
plates. The discharge pulse timing margin is a function of input load, which in turn is a
function of input gate and wire capacitances. Since we envision our proposed templates
to be used for large chunks of local computation and not for global communication, we
found the short pulse period sufficient for full input token discharge including the
added wire capacitance for each node, which corresponds to 12.5 µm wire length. In
the worst case, an input token took no longer than 2.5 FO4 delays to fully discharge,
which yields a timing margin of 2.5 FO4s. Since the discharge pulse period is not
on pipeline critical path for both forward latency and throughput, the timing margin
could be improved by adding two extra inverters to the pulse generator inverter chain
without affecting performance. With these two extra inverters, the timing safety cush-
ion increases from 2.5 FO4 to 4.5 FO4 delay, which makes the templates significantly
more robust.

6. 8X8-BIT BOOTH-ENCODED ARRAY MULTIPLIER
High performance multiplier circuits are an essential part of modern microproces-
sors [Schmookler et al. 1999] [Trong et al. 2007] and digital signal processors [Tian
et al. 2002]. To achieve high throughput and low latency, most high performance chips
use some form of booth encoded array multiplication hardware [Booth 1951]. The ar-
ray multiplier architecture requires a large number of tokens to be in flight at the
same time. Each multiplication operation produces a number of partial products which
are then added together to produce the final product. In terms of its usefulness to a
wide-range of applications and significant circuit complexity, a high throughput array
multiplier is a good candidate to effectively highlight the trade-offs between PCeHB
and our proposed pipeline templates. In this case study, we focus on improving energy-
efficiency by packing considerable logic within each pipeline stage, even at the cost of
incurring throughput degradation of up to 25% compared to PCeHB style pipelines.

We implemented an 8x8-bit radix-4 booth-encoded array multiplier (at the transistor
level) using PCeHB pipelines to act as our baseline. Figure 20 shows the top-level
specification of our 8x8-bit multiplier. The top part of Figure 20 shows the partial
product generation for the array multiplier. Each of the Y inputs is in a radix-4 format.
The multiplicand bits are used to generate the booth control signals for each partial
product row. Since a PCeHB pipeline can only compute a small amount of logic, each
of the rectangular boxes labeled PP represents a separate pipeline stage. The booth
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control signals and multiplier input bits are sent from one pipeline stage to another,
while each pipeline stage produces a two bit partial product.

The second half of Figure 20 shows the order in which the partial products are pro-
duced and summed up. The horizontal dotted lines separate different time periods.
Each of the dotted polygons represent a separate PCeHB pipeline stage. The entries
inside each polygon represent the inputs which are added together to produce the sum
and carry outputs for the next pipeline stage. PP stands for two-bit partial product
entry, C’ corresponds to sign bit for each partial product row, SS stands for two-bit
sum output from a previous stage, and C stands for a single-bit carry output from a
previous stage sum computation. The final product bits are generated in a bit-skewed
fashion, indicated by the symbol RR. Hence, we need to add slack-matching buffers on
the outputs as well as some of the inputs to optimize the multiplier throughput [Cum-
mings et al. 1994]. For simplicity, we do not show these slack-matching buffers in Fig-
ure 20. Our baseline multiplier is highly pipelined but contains very little logic in each
pipeline stage. While this helps to achieve a very high throughput of 18 transitions per
cycle, there is a large handshake overhead per each pipeline stage.

To quantify the energy efficiency and other characteristics of our proposed low-
handshake pipeline templates, we implemented similar full transistor level 8x8-bit
radix-4 booth-encoded array multipliers using N-P and N-Inverter pipeline templates.
Figure 21 shows an overview of N-P pipelines and their logic stacks for the 8x8-bit
array multiplier. Both N-P pipelines have four stages of logic. The first stage of the
first pipeline generates all partial product entries. This is clearly a big power saving,
as booth control signals and multiplier inputs need to be generated only once and not
for each separate pipeline block as in the PCeHB implementation. Each dotted poly-
gon represents a logic stack and not a separate pipeline stage, which leads to very
high logic density in each pipeline block. Each RR, SS, and C signal represents a sin-
gle output channel, which translates into 14 outputs for the first N-P pipeline block
and 4 outputs for the second N-P block. The N-Inverter pipeline implementation, not
shown due to space constraints, requires twice as many pipeline stages as N-P im-
plementation since no effective logic computation is performed in its PMOS pull-up
stacks. However, the rest of the design is similar to N-P pipeline implementation with
considerable logic within each pipeline stage.

In contrast to the large number of fine-grain pipeline blocks in the PCeHB imple-
mentation, we only need two N-P and four N-Inverter pipeline stages to implement
the bulk of 8x8-bit multiplication logic. The inputs to the first pipeline for both N-P
and N-Inverter implementations are four radix-4 multiplier bit entries and booth con-
trol signals for all rows, which are generated separately using PCeHB style pipelines.
Since PCeHB pipelines follow a four phase handshake protocol, we use four phase to
single-track conversion templates similar to those in [Ferretti and Beerel 2002] but
with a few modifications. Due to space constraints, we do not discuss the conversion
templates. For pipeline blocks with more than nine outputs, we use wide NOR comple-
tion detection scheme. For outputs destined for the same pipeline block, we only track
the neutrality of one of the outputs going to the second pipeline. This optimization
greatly reduces the complexity of RST circuitry, reduces power consumption, and in-
creases the throughput by up to 6.3% for our proposed pipeline templates. To highlight
the seamless integration of N-P and N-Inverter pipelines within any four phase hand-
shake environment, we convert the resultant product outputs into four phase 1-of-4
encoding.

6.1. Evaluation of asynchronous pipeline templates using 8x8-bit Multiplier
The transistors in our baseline PCeHB multiplier implementation and our proposed N-
P and N-Inverter pipeline implementations were sized using standard transistor siz-
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Fig. 20. 8x8-bit multiplier architecture using PCeHB pipelines
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Fig. 21. 8x8-bit multiplier using N-P pipelines

ing techniques [Weste and Harris 2004]. The slow and power-consuming state-holding
completion-elements were restricted to a maximum of three inputs at a time. Keepers
and weak feedback inverters were added for each state-holding gate to ensure that
charge would not drift even if the pipeline were stalled in an arbitrary state.

Since HSIM/HSPICE simulations do not account for wire capacitances, we included
additional wire load in the SPICE file for every gate in the circuit. Based on prior expe-
rience with fabricated chips and post-layout simulation, we have found that our wire
load estimates are conservative, and predicted energy and delay numbers are typi-
cally 10% higher than those from post-layout simulations. Our simulations use a 65nm
bulk CMOS process at the typical-typical (TT) corner. Test vectors are injected into the
SPICE simulation using a combined VCS/HSIM simulation, with Verilog models that
implement the asynchronous handshake in the test environment. All simulations were
carried out at the highest-precision setting.

Figure 22 shows the power-consumption breakdown of our proposed pipeline tem-
plates. In contrast to the PCeHB pipelines, which consume over 69% power in hand-
shake overheads, the handshake and completion detection logic accounts for only 26%
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of the total power in our proposed pipelines. The elimination of validity and neutrality
detection logic for a large number of intermediate nodes in each pipeline is the main
reason for the reduction of handshake related overheads.

Fig. 22. Power consumption breakdown of N-P and N-Inverter pipelines

To fully quantify and evaluate our proposed pipeline templates, we simulated all
three 8x8-bit array multiplier implementations across a wide range of voltages. All
experimental results presented in this section include the explicit overhead of con-
version templates. These templates convert input tokens from four phase protocol to
single-track protocol and the outputs from single-track protocol back to four-phase pro-
tocol.

The throughput and energy consumption results for all three pipeline implementa-
tions with data points corresponding to 0.6V to 1.1V at 0.1V intervals plotted from left
to right in Figure 23. As stated earlier, the N-Inverter and N-P implementations were
designed from energy efficiency perspective while allowing throughput degradation of
up to 25% compared to PCeHB design. To ensure fair comparison, the N-P implemen-
tation used a higher staticizer strength to yield similar noise margin as PCeHB and
N-Inverter implementations. To minimize handshake circuitry, each N-Inverter and N-
P pipeline block was packed with considerable logic computations and produced a large
number of outputs, which reduced overall throughput. Hence, in terms of throughput,
the PCeHB pipeline implementation yields the best results across all voltages. But this
performance improvement comes at the cost of 45.4% and 59.5% higher energy per op-
eration compared to the N-Inverter and N-P pipeline implementations respectively.
Another key observation from Figure 23 is that for any single throughput target, be
it in low throughput range such as 400-500 MHz or in high throughput range such as
1.3-1.5 GHz, our proposed templates consume far less energy per operation than the
PCeHB implementation.

The fact that our proposed pipelines worked across a vast voltage range without
requiring any transistor re-sizing highlights the robustness of our proposed templates.
The experimental results include the power consumed in templates that are required
to convert the inputs from four phase protocol to single-track protocol and the outputs
from single-track protocol to four phase protocol.

The energy savings are largely due to:

— The massive reduction in the handshake circuitry because of the elimination of va-
lidity and neutrality detection gates for all internal nodes.
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Fig. 23. 8x8-bit multiplier throughput vs energy for three different pipeline styles

— The sharing of inputs and intermediate outputs within a same pipeline block. In a
PCeHB implementation, the inputs and outputs are copied from one stage to another
and are subjected to separate validity and neutrality detection checks within each
pipeline block.

— The use of a more energy-efficient completion detection scheme.

To consider performance and energy together, we use two metrics: energy-delay
product and energy-delay2 product as shown in Figure 24. The results are normalized
to the PCeHB implementation. The N-Inverter and N-P pipelines reduce the energy-
delay product by 38.5% and 44% respectively. For energy-delay2 product, N-Inverter
implementation yields a 30.3% reduction and N-P pipelines result in 22.2% reduction
when compared to the PCeHB implementation.

Fig. 24. 8x8-bit Multiplier energy-delay analysis for three different pipeline styles

The N-Inverter and N-P implementations reduce the overall multiplier latency by
20.2% and 18.7% respecitvely as shown in Table II. These two pipeline templates can
pack significant amount of logic within a single pipeline block, which reduces the total
number of pipeline stages required and hence results in latency reduction. Although,
N-Inverter implementation requires twice as many pipeline stages as N-P implemen-
tation, it results in a 1.85% lower overall latency. This could be attributed to the use
slower pull-up logic stacks in N-P templates.
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Table II. 8x8-bit Array Multiplier La-
tency

Pipeline Style Latency
PCeHB 663 ps

N-Inverter 529 ps
N-P 539 ps

In terms of the total transistor count, the N-Inverter and N-P implementations use
42.2% and 54.2% less transistors respectively than the PCeHB implementation as
shown in Table III. The total transistor width in N-Inverter and N-P designs is 35.6%
and 46% less respectively than that in the PCeHB implementation. This huge saving
in the transistor count and width can be directly attributed to the packing of more
logic stacks within a single pipeline block and the elimination of handshake logic for
all intermediate nodes.

Table III. 8x8-bit Array Multiplier Transistor Count and Width

Pipeline Style No. of Transistors Width (µm )

PCeHB 17083 5290
N-Inverter 9864 3402

N-P 7819 2853

The choice of a particular pipeline implementation represents a design trade-off.
Critical factors such as target throughput, logic complexity, power budget, latency
range, total transistor count, noise margins, and timing robustness will have to be
taken into account simultaneously before choosing a particular pipeline implementa-
tion. The N-P and N-Inverter templates represent a good energy efficient alternative
to QDI templates, especially for logic computations which require a large number of
inputs or outputs or those with multiple intermediate logic stages. We envision these
circuits being used for large chunks of local logic (e.g. an array multiplier in a floating
point unit) wrapped with QDI interfaces, rather than globally.

7. SUMMARY
We propose two energy-efficient pipeline templates for high throughput asynchronous
circuits. These two templates, named N-P and N-Inverter pipelines, use single-track
handshake protocol. Each pipeline contains multiple stages of logic. The handshake
overhead is greatly minimized by eliminating validity and neutrality detection logic
gates for all input tokens as well as for all intermediate logic nodes. Both of these
templates can pack significant amount of logic within each pipeline block, while still
maintaining a fast cycle time of only 18 transitions. Stalls on inputs and outputs do not
impact correct operation. A comprehensive noise analysis of dynamic gates within our
proposed templates shows sufficient noise margins across all process corners. Since
our templates introduce multiple timing assumptions, we also analyzed the timing
robustness of our pipelines. A completion detection scheme based on wide NOR gates
is presented, which results in significant latency and energy savings especially as the
number of outputs increase.

Three separate full transistor-level pipeline implementations of an 8x8-bit Booth-
encoded array multiplier are presented. Compared to the PCeHB implementation, the
N-Inverter and N-P pipeline implementations reduced the energy-delay product by
38.5% and 44% respectively. The overall multiplier latency was reduced by 20.2% and
18.7%, while the total transistor width was reduced by 35.6% and 46% with N-Inverter
and N-P pipeline templates respectively.
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