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Abstract—We present the details of our energy-efficient asyn-
chronous floating-point multiplier (FPM). We discuss design
trade-offs of various multiplier implementations. A higher
radix array multiplier design with operand-dependent carry-
propagation adder and low handshake overhead pipeline de-
sign is presented, which yields significant energy savings while
preserving the average throughput. Our FPM also includes a
hardware implementation of denormal and underflow cases.
When compared against a custom synchronous FPM design, our
asynchronous FPM consumes 3X less energy per operation while
operating at 2.3X higher throughput. To our knowledge, this
is the first detailed design of a high-performance asynchronous
IEEE-754 compliant double-precision floating-point multiplier.

Keywords-Floating point arithmetic; asynchronous logic cir-
cuits; very-large-scale integration; pipeline processing

I. INTRODUCTION

Energy-efficient floating-point computation is important for
a wide range of applications. Traditionally, VLSI designers
primarily relied on CMOS technology and voltage scaling to
reduce power consumption [4]. With the transistor threshold
voltage fixed [10], VDD has been scaling very slowly if at all,
which means all performance improvements come at an in-
creased energy consumption. Furthermore, process variations
in deep sub-micron range have made devices far less robust,
which is increasingly making it difficult for synchronous
designers to overcome the problems associated with clock
skew rates and clock distribution [6]. The findings of a recent
in-depth study, to explore and devise ways to further scale
supercomputer petaFLOP performance by 1000X, indicate the
inadequacy of current design practices and technologies to
achieve the desired throughput within a sustainable power
budget [1]. This underscores a pressing need for alternate de-
sign practices, to reduce energy consumption for floating-point
computations while preserving robust behavior in advanced
technology nodes.

At the other end of the spectrum, embedded systems that
have traditionally been considered low performance are de-
manding higher and higher throughput for the same power
budget to support compute-intensive floating-point applica-
tions that improve the user experience. Since these applications
have to be deployed on portable devices with limited battery-
life, it is critical that we develop energy-efficient floating-
point hardware for these embedded systems, not simply high
performance floating-point hardware.

The IEEE 754 standard [19] for binary floating-point arith-
metic provides a precise specification of floating-point number
formats, computation operations, and exceptions and their
handling. The combination of a vast range of inputs, special
cases, and rounding modes makes the hardware implemen-
tation of fully IEEE 754 standard compliant floating-point
arithmetic a very challenging task. Ignoring certain aspects
of the standard can lead to unexpected consequences in the
context of numerical algorithms. Hence, most floating-point
hardware is IEEE-compliant or has an IEEE-compliant mode.
The IEEE format specifies two main groups of floating-point
format: single-precision and double-precision. In this work,

we primarily focus on double-precision format since it is
commonly used in most scientific and emerging applications.

We introduce a number of micro-architectural and cir-
cuit level optimizations to reduce power consumption in
the floating-point multiplier (FPM) datapath. A floating-point
multiplier consumes significantly more energy compared to a
floating-point adder (FPA) [21,24]. This combined with the
knowledge that the frequency of floating-point multiplication
operations in emerging applications is similar to that of
floating-point addition computations makes energy and power
optimizations in the FPM datapath highly essential for an
efficient full floating-point unit (FPU) design.

II. BACKGROUND AND RELATED WORK

In terms of micro-architectural complexity, the floating-
point multiplier (FPM) datapath is simpler than the FPA dat-
apath. The FPM datapath for double precision multiplication
operation is shown in Figure 1. The double-precision inputs
into the datapath, A and B, comprise 1-bit of sign, 11-bits
of exponent, and 52-bits of mantissa (also known as the
significand) each.

Fig. 1. Floating-point Multiplier Datapath
The following summarizes the key steps in an IEEE com-

pliant FPM datapath:
• The first step in the FPM datapath is to unpack the

IEEE representation and analyze the sign, exponent, and
mantissa bits of each input to determine if the inputs are
standard normalized or are of one of the special types
(NaN, infinity, denormal).



• The mantissa bits are extended with the implicit bit. It
is set to one for normal inputs and zero for a denormal
input.

• The 53-bit long mantissas of both inputs are used to gen-
erate partial products corresponding to 106-bit product.
Since high throughput and low latency are of essence in
floating-point applications, most FPMs use some form of
an array multiplier, such as a booth-encoded multiplier
as shown Figure 1, to meet the performance demands.
Most array multipliers employ an array of carry-save-
adders (CSAs) [27] to reduce the large number of partial
products to two final full product-length bit streams.

• The most significant 53-bits of the two output bit streams
from the CSA array are summed up using a carry prop-
agation adder (CPA) to generate a 53-bit mantissa. The
least significant 53-bits are used to generate the carry
input to the CPA as well as compute the guard, round,
and sticky bits to be used in post normalization rounding.

• In parallel, the exponent logic computes the resulting
exponent, which is a sum of the exponent values of both
inputs minus the bias. The bias has a value of 1023 in case
of double-precision operations. The sign of final product
is also computed.

• The post multiplication step includes normalization of
the 53-bit mantissa. For normal inputs and non-underflow
cases, either the mantissa is already normalized or it may
require a right shift by a single bit position, in which
scenario the exponent is adjusted, in parallel, by adding
one to it. The guard, round, and sticky bits are updated
and are used, along with the round mode, to determine if
the product needs to be rounded or not.

• In case of rounding, the mantissa is incremented by one.
If rounding yields a carry out, the exponent is adjusted
by adding one to it and right shifting the mantissa by one
bit position.

• The final stage checks for a NaN, infinity, or a denormal
outcome before outputting the correct result in the IEEE
format.

With normalization step limited to a simple shift of no
more than one-bit position and the exponent logic comprising
only 11-bit long arithmetic, the FPM’s complexity is largely
a function of its 53x53 multiplier, sticky bit computation
block, and the final carry propagation adder. We present
various structural and circuit-level optimization techniques to
reduce the complexity and power consumption footprint of the
aforesaid logic blocks.

A. Asynchronous Multipliers and Floating-Point Arithmetic
In terms of the multiplier design, the delay variability nature

of iterative multipliers makes them a popular choice amongst
asynchronous designers [7,12]. An iterative multiplier utilizes
a few functional units repeatedly to produce the result. In a
simple iterative n by n multiplier implementation, where n is
the number of bits, the product is computed after n iterations.
Each iteration comprises a minimum n-bit addition and a
serial shift by one-bit position. Furber et al. [13] proposed
a low power integer multiplier which exploits the commonly
occurring pattern of low number of significant bits in integer
inputs as means to reduce the total number of iterations. These
iterative multiplier designs, though compact in terms of area,
are not feasible to be used in floating-point multiplier hardware
due to their very high latency and low throughput and the fact
that unlike the inputs in integer arithmetic, the most significant
bits of floating-point mantissa inputs are non zero.

Joel Noche et al. [17] used asynchronous circuits in their
design of a single-precision FPU. However, their FPU is com-

pletely non-pipelined, doesn’t include any energy optimization
techniques, and does not implement rounding logic. Their FPU
has many orders of magnitude higher latency compared to
all recent floating-point designs from synchronous domain.
Sheikh et al. [24] employed fine-grain asynchronous circuit
techniques for various operand-dependent optimization tech-
niques to reduce average-case power consumption in the FPA
datapath. However, their work is restricted to FPA design only.

B. Synchronous Floating-Point Multipliers
There is a large body of work on synchronous FPM design.

Ercegovac and Lang [8] contains an overview of the different
techniques used to optimize floating-point multiplication. The
focus of prior work has been the array multiplier block,
which is the single largest logic structure within the FPM
datapath. Earlier designs have employed various architecture
and circuit-level optimizations to reduce array multiplier la-
tency and increase its throughput [18,20,22,28]. However,
there is relatively much less work on improving the energy
efficiency of multiplier datapath [5], which is one of our
primary contributions.

III. FLOATING-POINT MULTIPLIER POWER BREAKDOWN

We use quasi-delay-insensitive (QDI) asynchronous circuits
for our baseline FPM design. The fine-grain asynchronous
pre-charge-enable-half-buffer (PCeHB) pipelines in our design
contain only a small amount of logic (e.g. a two-bit full-
adder). The actual computation is combined with data latching,
which removes the overhead of explicit output registers. This
pipeline style has been used in previous high-performance
asynchronous designs, including a fully-implemented and fab-
ricated asynchronous microprocessor [15].

Unlike in the FPA datapath where total power is dis-
tributed roughly evenly amongst a number of different logic
blocks [24], the FPM’s complexity is largely a function of its
53x53 multiplier. This is highlighted in Figure 2 which shows
the power breakdown estimates of our baseline fully QDI
FPM datapath. The booth-encoded array multiplier accounts
for roughly 76% of the total power consumption. Hence, in
this work, we primarily focus on reducing energy/power of
the array multiplier block.

Fig. 2. FPM Pipeline Power Breakdown

The Front-End/Exponent block corresponds to the logic that
unpacks IEEE format inputs and analyzes the sign, exponent,
and mantissa bits of each input to determine if the inputs are
standard normalized or are of one of the special types (NaN,
infinity, denormal). It also includes the logic to compute the
resultant exponent of the FPM product. The array multiplier
outputs two 106-bit streams. The most significant 53-bits of the
two output bit streams from the array multiplier are summed
up using a carry propagation adder (CPA) to generate a 53-bit
mantissa. The least significant 53-bits are used to generate the
carry input to the CPA as well as compute the guard, round,



and sticky bits to be used in post normalization rounding. The
sticky bit computation block and the final carry propagation
adder are the other power consuming structures within the
FPM datapath. In this work, we present various structural and
circuit-level optimization techniques to reduce the complexity
and power consumption footprint of the aforesaid logic blocks.

IV. MULTIPLIER DESIGN TRADE-OFFS

The choice of a particular multiplier design depends on a
number of factors. These include: desired throughput, overall
latency, circuit complexity, and the allowed power budget.
Traditionally, high performance has been the key driving
factor in multiplier design. However, as power consumption
has become a major design constraint lately, a number of
low-power multiplier designs have been proposed both in
synchronous [5,11] and asynchronous domains [9,12,13].

A. Iterative Multipliers
Iterative multipliers represent a low complexity design

choice. An iterative multiplier utilizes a few functional units
repeatedly to produce the result. Iterative multipliers can be
used to reduce energy consumption by exploiting input data
patterns; stages which add zero to the partial product could
be detected in advance and skipped, hence reducing delay
and energy consumption. Though compact in terms of area,
iterative multipliers are not feasible to be used in floating-
point multiplier hardware due to their very high latency and
low throughput.

Reduction in the total number of partial products is the key
goal of all multiplier optimization techniques, as it helps to
reduce both latency as well as energy consumption. Along
these lines, Efthymious et al. [7] proposed an asynchronous
multiplier implementation based on the original Booth algo-
rithm [3]. Their design scans the multiplier operand and skips
chains of consecutive ones or zeros. This can greatly reduce
the number of partial product additions required to produce
the product. The downside is that it requires a variable length
shifter to correctly align multiplicands for generating each
partial product row. The effectiveness of this algorithm for
high performance FPM hardware is dependent on the number
of variable length shifts, which in turn depends on the number
of partial product rows that are to be generated.

Our application profiling results for a number of scien-
tific and emerging floating-point applications, using Intel’s
PIN [14] toolkit, indicate that although the original Booth
algorithm is able to reduce the number of partial products
from the maximum of 27, a sufficiently large number of partial
products rows, more than 18 on average, still need to be
generated, each of which requires the use of variable shifter.
The latency overhead of such a large number of variable shift
operations is too costly for any high performance FPM design.
Hence, we did not pursue this algorithm any further.

B. Array Multipliers
Array multipliers are the common choice for high through-

put and low latency multiplication operations in most com-
mercial FPM designs [20,26]. They produce a pre-determined
fixed number of partial products, which greatly minimizes
if not fully eliminates the opportunities for exploiting data
dependent optimizations. For example, introducing logic to
bypass a zero partial product instance may add the same
amount of delay as summing the extra term in a carry save
adder (CSA) used to reduce the partial product terms. As
array multipliers present very limited opportunities for data
dependent optimizations, there has not been much work on
asynchronous array multiplier solutions.

The simplest implementation of an n by n array multiplier
produces n partial products in parallel, which are then summed
up using CSAs. The large number of partial products makes
this simple design unfeasible for both latency and power con-
sumption perspective. As a result, many advanced multiplier
implementations from academia [21] and industry [20,26,28]
use some form of radix-4 modified booth algorithm, which
cuts the number of partial products to n/2. The reduction in
the number of partial products yields significant savings in
energy consumption, latency, as well as the total transistor
count.

For a 53x53-bit multiplier in an FPM datapath, with inputs Y
and X, a radix-4 booth-encoded algorithm produces 27 partial
products. Each of the Y and X inputs is in a radix-4 format.
The multiplier bits, X, are used to generate booth control
signals for each partial product row. One of the big advantages
of radix-4 booth multiplication is the relative simplicity of
the logic which generates partial product rows. The only
multiples of the multiplicand that are needed are: 0, ± Y,
and ± 2Y. Partial product term Y is generated by simply
assigning it the multiplicand. The 2Y multiple can be generated
with relative ease by assigning it one bit right shifted value
of the multiplicand. Bitwise inversion is used to generate
complemented multiples. To reduce these 27 partial product
rows to two partial product rows, a reduction tree comprising
7 stages of 3:2 counters/carry-save-adders (CSAs), is usually
employed [27].

The energy consumption of the multiplier array is directly
correlated to the number of partial product terms. With more
partial product terms, more logic is needed first to produce
those terms and then to sum and reduce those terms using a
reduction tree. To further improve energy efficiency, one of
the alternatives is to use a radix-8 Booth-encoded multiplier
which reduces the number of partial product rows from 27
down to 18. The biggest disadvantage of a radix-8 multiplier
is that it requires a 3Y multiple which needs a full length carry
propagation adder to compute. Since the 3Y multiple must
be available before any partial product term is computed, a
tree adder topology such as a hybrid Kogge-Stone carry-select
adder [27] must be used to minimize any latency degradation
in a synchronous design.

Table I compares three different radix length implementa-
tions of a 53x53-bit multiplication unit in terms of the total
partial products bits and the number of logic stages required to
reduce the total number of partial product rows to two rows.
A radix-8 Booth-encoded implementation produces 62.4% and
31.3% less partial products bits compared to bitwise radix-
2 and Booth-encoded radix-4 multipliers respectively. But in
terms of latency, when compared to a radix-8 version, a radix-
4 implementation needs only one extra logic stage because
partial product terms are summed and reduced using CSAs in
a tree structure, which has logarithmic logic depth. This gives
a radix-8 multiplier a single logic stage cushion to compute
the tough 3Y multiple. Hence, for any radix-8 Booth multiplier
to be considered a viable alternative, it must provide a very
low latency 3Y computation unit with energy consumption
significantly lower than the savings attained with the use of
31.3% less partial product bits. The use of power intensive
tree adders greatly diminishes the savings that result from the
reduction in the number of partial product terms. As a result,
radix-8 multipliers are not commonly used in synchronous
FPM implementations.



TABLE I
ARRAY MULTIPLIER

Multiplier Type Partial Product Bits Reduction Stages
Radix-2 Bitwise 2809 9
Radix-4 Booth 1539 7
Radix-8 Booth 1056 6

V. 53X53-BIT RADIX-8 ARRAY MULTIPLIER

A. 3Y Adder
The highly operand dependent nature of the 3Y multiple

computation makes it a strong potential target for asyn-
chronous circuit optimizations. The application profiling re-
sults in Figure 3 show that the longest carry chain in a radix-4
3Y ripple-carry addition is limited to 3 ripple positions for over
90% of the operations across most floating-point application
benchmarks. The delay of an adder depends on how fast the
carry reaches each bit position. For input patterns that yield
such small carry chain lengths on average, we need not resort
to an expensive tree adder topology designed for the worst-
case input pattern of carry propagating through all bits.

Fig. 3. Radix-4 3Y Adder Longest Carry Length

The interleaved adder topology provides an energy efficient
solution for computing the bottleneck 3Y multiple term re-
quired in radix-8 Booth multiplication. It comprises two 53-
bit radix-4 ripple-carry adders, where each 3Y block shown
in Figure 4 computes the 3Y multiple for the corresponding Y
input. The first arriving data tokens YRs are forwarded to the
right 3Y adder. In standard PCeHB reshuffling, the interleave
split stage has to wait for the acknowledge signal from ripple-
carry adder before it can enter neutral stage and accept new
tokens. However, this would cause the pipeline to stall in
case of a long carry chain. The interleaved adder topology
circumvents this problem by instead issuing the next arriving
data tokens to the left 3Y adder. Hence, the two ripple-carry
adders could be in operation at the same time on different
input operands. The interleave merge stage receives outputs
from both right and left adders and forwards them to the next
stage in the same interleaved order. With our pipeline cycle
time of approximately 18 logic transitions (gate delays), the
next data tokens for the right adder are scheduled to arrive
after 36 transitions of the first one. This gives ample time to
quite rare inputs with very long carry-chains to ripple through
as well without causing any throughput stalls.

For inputs patterns observed in our various floating-point
application benchmarks, the forward latency of computing the
3Y term using the interleaved adder is less than that attained
with power-intensive tree adders, which are frequently used
in synchronous designs to guarantee low latency computa-
tion. Compared to a 53-bit hybrid Kogge-Stone carry-select
tree adder implementation, the interleaved adder consumes
approximately 68.1% less energy at 8.3% lower latency for
the average case input patterns shown in Figure 3. We exploit
this data dependent adder design topology, not possible within

Fig. 4. Interleaved 3Y Adder

synchronous domain, to design an energy-efficient radix-8
Booth-encoded multiplier for our asynchronous FPM datapath.

B. Pipeline Design
Although, the radix-8 multiplier reduces the number of

partial products bits by 31.3% compared to a radix-4 im-
plementation, it still needs to produce and sum over 1050
partial product bits. As discussed by Sheikh et al. [25],
the standard PCeHB pipelines, though very robust, consume
considerable power in handshake circuitry, which gets worse
as the complexity of PCeHB templates increases with more
input and output bits. The handshake overhead, in a two-bit
full adder PCeHB pipeline implementation, is as high as 69%
of the total power consumption [25]. Therefore, for circuits
with large number of inputs, intermediate and final outputs,
such as a multiplier array, the PCeHB pipelines represent a
non-optimum choice from energy efficiency perspective.

We use N-Inverter pipeline templates, first proposed in [25],
to implement the multiplier array. An N-Inverter pipeline
reduces the total handshake overhead by packing multiple
stages of logic computation within a single pipeline block, in
contrast to PCeHB template which contains only one effective
logic computation per pipeline. The handshake complexity is
amortized over a large number of computation stacks within
the pipeline stage. Sheikh et al. [25] showed that compared to
a PCeHB pipelined implementation the N-Inverter pipelines
can reduce the overall energy consumption by 52.6% while
maintaining the same throughput. These improvements come
at the cost of some timing assumptions and require the
use of single-track handshake protocol. The design trade-offs
associated with N-Inverter templates are discussed extensively
in [25].

The block-level pipeline breakdown of our radix-8 mul-
tiplier array is depicted in Figure 5 . The granularity at
which the array is split is critical from both performance
and energy efficiency perspective. The N-Inverter templates
allow us to pack considerable logic within each stage, which
helps to reduce the handshake associated power consumption
significantly. However, as the number of logic computations
within a pipeline block increase, so do the number of outputs.
With more outputs, although the number of transitions per
pipeline cycle remain the same with the use of wide NOR
completion detection logic, each of these transitions incur a
higher latency [25]. The choice of 8x4 pipeline blocks, with
15 outputs per each stage, was made to provide a good balance
of low power and high throughput. The pipeline block labeled
8x4 Sign is identical to an 8x4 block except that it includes
a sign bit for each partial product row. The sign bit acts as
an input of one in the least significant position for any of the
cases involving a complemented partial product multiple of -
Y, -2Y, -3Y, or -4Y. The pipeline blocks labeled 10x4 Sign Ext



are similar in design to the frequent 8x4 block, except that it
provides support for sign extension bits required for supporting
complemented multiples. The 8x2 block is a reduced version of
an 8x4 block with only two booth rows. The similarity between
these different pipeline blocks and the frequent use of the 8x4
pipeline block provides us with great design modularity, which
helped to reduce the overall design effort required to optimize
the multiplier array for throughput and energy efficiency.

Fig. 5. Radix-8 Multiplier Array

Due to the similarity between different pipeline blocks, we
only present the details of the 8x4 block. Each 8x4 pipeline
block receives Booth-control, Y and 3Y input tokens. The eight
bits of Y and 3Y inputs are encoded as four 1-of-4 tokens each.
Figure 6 shows the intermediate and final logic outputs within
an 8x4 pipeline. It also shows the corresponding mapping
of these outputs to a simplified circuit level depiction of an
N-Inverter pipeline template. The NMOS stacks in the first
stage compute four rows of eight bit partial product terms in
inverted sense. These inverted outputs drive the inverters in the
second stage of the pipeline block to produce corresponding
partial product, PP, outputs. The next stage of NMOS stacks
implements carry-save addition logic [27] to sum and reduce
these four rows of partial products to two rows of inverted
sum and carry outputs. These inverted outputs drive the PMOS
transistors in the last stage to produce sum and carry outputs,
SS and CC, in correct sense for the following pipeline blocks.

Fig. 6. 8x4 Multiply Logic Block

For array multiplication, all pipeline blocks have to be in
operation in parallel. The parallel operation requires multiples
copies of input tokens to be consumed simultaneously by mul-
tiple pipeline blocks. For example, each booth control token
is required in seven different pipeline blocks. To facilitate
this, we include multiple copy stages prior to initiating the
array computation. These copy blocks generate the desired
number of copies for each input token. These tokens are
then forwarded to the pipeline blocks which consume them
to produce sum and carry outputs.

The next computation step is the summation of the large
number of SS and CC outputs that are produced in parallel.
This summation step is commonly referred to as reduction tree
in arithmetic literature. A reduction tree basically employs
3:2 counters, often referred to as carry-save-adders (CSAs),
to sum and reduce three inputs to two outputs at each stage
of the tree. Within a few stages, the large number of tokens
spanning over many partial product rows are reduced to mere
two 106-bit long rows, which are finally summed using a
carry-propagation adder. We implemented a full 3:2 counter
reduction tree [27] using multiple N-Inverter pipeline blocks.
The NMOS stacks within each block implement carry-save
addition logic. In terms of logic density, each pipeline block
was restricted to produce no more than 15 outputs to maintain
cycle time similar to 8x4 pipeline blocks.

The N-Inverter templates use single-track handshake pro-
tocol. As a result, the input tokens are first converted from
four-phase handshake protocol into single-track protocol using
conversion templates. This adds an additional logic stage to the
FPM datapath latency. Since the final carry-propagation adder
uses four-phase handshake protocol, the output tokens from
the reduction tree are converted back to four-phase protocol.
We hide the latency of this conversion stage by implementing
the final stage of the reduction tree within these conversion
templates.

The energy, latency, and throughput estimates of FPM
implementations with radix-4 and radix-8 array multipliers
are presented in Figure 7. The results are normalized to FPM
datapath with a radix-4 multiplier. The 31.3% reduction in the
number of partial product bits translates into 19.8% reduction
in energy per operation. But this improvement in energy
efficiency comes at a cost of 5.9% increase in the FPM latency
because of the 3Y partial product computation that needs to
determined prior to initiating the multiplier array logic. A
part of the 3Y computation latency is masked within booth
control token-generation and copy pipelines. Since the radix-4
multiplier requires one extra computation stage in the reduc-
tion tree compared to a radix-8 multiplier implementation, the
latency overhead of the 3Y computation can be further hidden.
The 5.9% latency increase is attributed to the 3Y multiple
computation part which is not masked. Despite the increase in
latency, the throughput for both implementations remains the
same due to sufficient slack availability within the interleaved
3Y computation block. The choice of a particular multiplier
implementation represents a design trade-off. Since our goal
was to optimize for energy consumption and throughput, we
chose the radix-8 multiplier implementation in our final FPM
design.

Fig. 7. Radix-4 Multiplier vs. Radix-8 Multiplier



VI. STICKY-BIT LOGIC AND CARRY-PROPAGATION ADDER

The multiplier array outputs two rows of 106-bit long partial
sum and carry terms. The next step is to compute the 53-bit
mantissa of the FPM output. This requires the summation of
the most significant 53-bits of the two incoming partial sum
and carry terms using a carry-propagation adder (CPA). The
least significant 53-bits of the partial sum and carry terms are
needed to compute the carry input into the CPA as well as
the guard, round, and sticky [19] terms required during the
rounding step.

A. Carry Computation and Sticky-bit Logic
The multiplier array requires relatively less number of sum-

mation steps to produce its least significant output bits. This
is because there are less partial product terms to be summed
since each successive partial product row is skewed by three bit
positions from the previous one in radix-8 multiplication. As
a result, the least significant bits are available relatively earlier
than rest of the multiplier array outputs. We take advantage of
our fine-grain pipelining by initiating the carry computation
as soon as the least significant bits arrive. Furthermore, the
application profiling results in Figure 8 show that for over
90% operations across all applications the longest ripple-carry
length to compute the carry input term is less than four radix-
4 bit positions. These average-case patterns indicate that the
carry term could be computed well in time for the CPA
operation, hence alleviating the need of any speculative CPA
implementations as is usually done in the case of most high
performance synchronous FPMs.

Fig. 8. Longest ripple-carry length for computing CPA carry input

The micro-architecture of carry and sticky-bit computation
is depicted in Figure 9. It uses interleaved split and merge
pipelines, first introduced with the design of interleaved adder.
The inputs A and B in Figure 9 are in one-of-four encoded
format and correspond to 52 least significant bits of partial
sum and carry output terms from the multiplier array. The
odd data tokens are sent on the output channels labeled with
R prefix, while the next arriving even data tokens are sent
on channels with L prefix. Each Carry Sticky block computes
the carry and sticky bit terms at that bit position. With carry
chain lengths of less than four, as seen in Figure 8, the final
carry term is computed within four logic levels on average.
This represents logarithmic average latency. The odd tokens
are used to compute the carry term cinR used as carry input
in the odd ripple-carry adder of our interleaved CPA, whereas
the next arriving even data tokens compute the carry term
cinL used as carry input in the even ripple-carry adder of our
interleaved CPA topology.

For sticky-bit computation, we use parallel tree topology
which combines bitwise sticky-bit values to compute the
final sticky-bit. A ripple flow architecture similar to the one
used to compute carry input term was deemed not feasible

Fig. 9. Interleaved topology to compute sticky-bit and carry input

as it yielded consistently long ripple chains, which caused
throughput degradation. Our interleaved topology prevents
throughput degradation up to ripple lengths of 14 bit positions
only. The application profiling results yield ripple lengths of
15 or more quite frequently. The sticky-bit is set to one if any
of the bits is one, but for it to be set to zero it has to ensure that
all prior bits in the sequence are zero. This is what causes the
long ripple chains and renders ripple-flow design infeasible.

B. 53-bit Carry-Propagation Adder
We harness the timing flexibility of our underlying asyn-

chronous circuits by using interleaved adder topology for the
53-bit carry-propagation adder design. The interleaved adder
comprises two ripple-carry adders. The adder topology is
identical to the one used earlier for 3Y multiple computation.
Our choice of the interleaved adder was made on the basis of
application profiling results, which indicate very small carry
chain lengths on average across all application benchmarks.
It yields average throughput similar to that attained with
expensive tree adder designs while consuming up to 4X less
energy per operation.

VII. DENORMAL, UNDERFLOW, AND ZERO-INPUT CASE

While discussing the various trade-offs involved in the FPM
datapath design, we have so far ignored certain special cases
specified in the IEEE format [19]. Two of these special cases:
the denormal numbers and underflow case represent the most
difficult operations to implement in an FPM datapath. The
scenarios under which these two special cases arise and the
tasks that need to be performed are summarized as follows:
• One of the FPM inputs is a denormal number, which

yields a mantissa with zeroes in its most significant bit
positions. If the non-bias exponent for the product is
greater than the minimum value of one, the product needs
to be left shifted while decrementing the exponent until
it is normalized or the exponent reaches the value of one.
We refer to this scenario as the Denormal case.

• One of the FPM inputs is a denormal number or both FPM
inputs are very small numbers and the resulting exponent
is less than the minimum value of one. In this case, the
mantissa needs to be right shifted. The value of right shift
is equal to the difference between the minimum value
and resulting exponent or an amount which zeroes out
the mantissa, whichever of the two is smaller. We refer
to this scenario as the Underflow case.

The need of variable left shift and right shift logic blocks
makes the hardware support for denormal and underflow
cases expensive. However, the infrequent occurrence of these
special case inputs and the extensive hardware complexity
required to support these operations has meant that many



FPM designs [16,28] do not fully support these operations
in hardware. Instead, these operations are implemented in
software via traps. This yields very long execution time [23].
It also means that the FPM hardware is no longer fully IEEE
compliant.

We use serial shifters to provide full hardware support for
these special case inputs. Using conditional split pipelines,
the output bits from the CPA are directed to either Normal
or Denormal/Underflow logic path. The Normal datapath
includes single-bit normalization shift block and rounding
logic. The Denormal/Underflow unit comprises serial left and
right shift blocks and a combined rounding block. For input
tokens diverted to the Normal datapath, no dynamic power is
consumed within the Denormal/Underflow block and likewise
for input tokens headed for Denormal/Underflow block, there
is no dynamic power consumption in the Normal datapath.
In contrast, synchronous design requires significant control
overhead to attain fine-grain clock gating.

Once the mantissa has been correctly aligned using variable
left or right shift block, a subsequent rounding operation may
be required to increment the 53-bit mantissa by one. We utilize
ripple-carry 1-of-4 encoded increment logic to implement
rounding. An expensive increment logic topology would have
been futile since the output from variable shift blocks arrives
in bitwise fashion. The rounding logic is shared between the
Denormal and Underflow datapaths as shown in Figure 10
to further minimize the area overhead of supporting these
special case operations. The Rnd block receives incoming
guard, round, sticky, and rounding mode bits from both special
case datapaths. It selects the correct set of inputs to determine
whether to increment the mantissa or not.

Fig. 10. Unified rounding hardware for denormal/underflow cases

Prior to the final Pack pipeline, there is a merge pipeline
stage, which selects the output from either the Normal or
the Denormal/Underflow datapath. Since these special case
inputs happen very infrequently as shown in Figure 11, the
throughput degradation due to the use of serial shifters does
not effect the average FPM throughput.

A. Zero-input Operands
Operand profile of floating-point multiplication instructions

reveals that a few application benchmarks have a significant
proportion of zero input operands. These primarily include ap-
plications with sparse matrix manipulations, such as 447.deal
and 437.leslie3d [2], despite their use of specialized sparse ma-
trix libraries. For other benchmarks, the zero-input percentage
varies widely as shown in Figure 11. In most state-of-the-art
synchronous FPM designs that we came across [21,26,28], the
zero-input operands flow through the full FPM datapath. They

yield similar latency and consume same power as any other
non-zero operand computation. This is highly non optimum
since if one or both of the FPM operands are zero, the final
zero output could be produced much earlier and at much
reduced energy consumption by skipping most of the compute
intensive power consuming logic blocks such as the multiplier
array, carry propagation adder, normalization, and rounding
unit.

Fig. 11. Operand profile of floating-point multiplication instructions

We provide a zero bypass path in the FPM datapath to
optimize its latency and energy consumption in the case of
zero operands. To activate the bypass path, the FPM utilizes
the zero flag control output from Unpack stage, which checks
if any of the input operands is zero. But this information is not
available in time before the start of pipeline stages pertaining
to Booth control and 3Y multiple generation. One possible
solution was to delay these pipeline stages until the zero flag
is computed and then use it to divert the tokens to either
the regular or the bypass path. Since this solution incurs a
latency hit for non-zero operands, it was discarded. In our
design, instead of delaying the multiplier array, we inhibit the
flow of tokens much deeper in the datapath. As a result, in
our design the energy footprint of zero operand computations
includes the overhead of computing Booth control token as
well as some parts of the 3Y multiple computation. But this
still yields roughly 82% reduction in energy consumption for
each zero operand computation, while preserving same latency
and throughput for non-zero operand operations.

VIII. FLOATING-POINT MULTIPLIER EVALUATION

This section presents the SPICE simulation results of our
proposed FPM datapath. The transistors in the FPM were sized
using standard transistor sizing techniques [27]. To meet high
performance targets and to minimize charge sharing problems,
each NMOS stack was restricted to a maximum of four
transistors in series. Since HSIM/HSPICE simulations do not
account for wire capacitances, we included an additional wire
load equivalent to a wire length of 8.75 µm in the SPICE file
for every gate in the circuit. Our simulations use 65nm bulk
CMOS process at 1V nominal VDD and typical-typical (TT)
process corner.

For non-zero operands, the FPM registers a highest through-
put of 1.53 GHz. In applications with a considerable per-
centage of zero operands, the average FPM throughput rises
to as high as 1.78 GHz, since zero input operations skip
throughput constraining N-Inverter templates in the multiplier
array. The FPM energy per operation results across all ap-
plication benchmarks are shown in Figure 12. Applications
with considerable zero-input operands consume significantly
less energy per operation as zero-input operations skip various
logic blocks.



Fig. 12. FPM energy per operation across various floating-point applications

In Table II, we compare our proposed asynchronous FPM
design against a custom FPM design by Quinnell et al. [21]
in 65nm SOI process at 1.3V nominal VDD. The energy,
throughput, and latency results include only non-zero operand
operations in order to provide the worst-case comparison.
Despite using 65 nm bulk process, our FPM design con-
sumes 3X less energy per operation while operating at 2.3X
higher throughput. Both designs have similar latency at 1.3V.
However, the custom FPM latency results do not include
any internal pipeline latches, which account for a significant
proportion of overall latency especially in high throughput de-
signs. Our asynchronous FPM design compares quite favorably
against the custom synchronous FPM implementation despite
employing radix-8 Booth-encoded multiplier, which has an
average 5.9% higher latency than a radix-4 Booth-encoded
multiplier design.

TABLE II
ASYNCHRONOUS FPM VS SYNCHRONOUS FPM

Design Energy/op Throughput Latency @1.3V
Proposed FPM 92.1 pJ 1.53 GHz 705 ps
Quinnell FPM 280.8 pJ 666 MHz 701 ps

For frequently occurring zero input operations in sparse
matrix applications, our proposed FPM yields an even lower
latency and energy per operation. The results for zero input
operands are shown in Table III, which highlights the efficacy
of zero bypass path.

TABLE III
ZERO OPERAND FEATURES

Design Energy/op Latency
Proposed FPM 15.8 pJ 464 ps @ 1V
Quinnel FPM 280.8 pJ 701 ps @ 1.3V

Since leakage power has become an important design con-
straint, our simulations model sub-threshold and gate leakage
effects in detail. The total leakage power of our FPM in idle
mode was estimated at 1.62 mW using typical-typical process
corner at 90◦C and a VDD of 1V.

IX. SUMMARY

We presented the detailed design of an asynchronous high-
performance energy-efficient IEEE 754 compliant double-
precision floating-point multiplier. We provide thorough anal-
ysis of the trade-offs involved in using radix-4 and radix-8
array multiplier designs. The radix-8 design was preferred
since it further reduced the total FPM energy consumption by
19.8% while preserving the average throughput. The full FPM
datapath with numerous operand-dependent and pipeline opti-
mizations is fully quantified using 65nm bulk process. When
compared against a custom synchronous FPM design [21] in

65nm SOI process, it consumes 3X less energy per operation
while operating at 2.3X higher throughput.
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