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Abstract—Quasi Delay-Insensitive (QDI) circuits can be cre-
ated through the procedure of Martin Synthesis, a series of
transformations that begin with an executable specification and
end in a transistor network. If these transformations are properly
applied the circuits will be correct by construction; however if
they are improperly applied, finding design errors can be quite
difficult. We show that the forward transformations of Martin
Synthesis are reversible, and that the inversion of these steps
recreates the specification when applied to correctly synthesized
circuits. We have created a tool to apply these inversions, and
show that it can also be used to verify other compilation methods
for QDI circuits. This procedure presents an alternative approach
to typical VLSI verification by requiring little designer effort and
by reconstructing specifications through transformations.

I. INTRODUCTION AND MOTIVATION

Verifying that VLSI circuits will operate correctly is an
important area of research, due both to the very high costs
of failure, and the high level of complexity. However, many
of the best methods to verify circuits require a great deal of
designer effort to set up the verification [1], and any errors in
this specification can be very difficult to diagnose and debug.

Martin Synthesis for Quasi Delay-Insensitive (QDI) asyn-
chronous VLSI circuits begins with a description of com-
putation in the Communicating Hardware Processes (CHP)
language, a derivative of Hoare’s Communicating Sequential
Processes (CSP) [2]. This description is transformed into
several smaller CHP programs whose actions are synchronized
by actions on communication channels. These channels are re-
placed with appropriate handshakes, which may be reshuffled
before being transformed into circuits [3]. When properly ap-
plied, this procedure generates correct asynchronous circuits.

For circuits generated through Martin Synthesis, the spec-
ification is the original high-level description, which is itself
simulatable. Currently, the majority of QDI circuits are verified
by referencing their final simulated behavior against simula-
tions of this original specification This is not sufficient for
very large designs which may have unknown rare cases that
are not exercised by simulations. A formal verification system
for asynchronous circuits has long been desired [4], but most
of the effort has gone to verifying that the synthesis steps can
be correctly applied forwards [5].

In the field of computer science, there has been consid-
erable work in the reverse engineering and decompilation of
programs, principally for the purposes of understanding how
they operate, either for modification of legacy programs or for
understanding unknown programs [6]. These decompilation

procedures work best when the program was produced through
known program transformations.

We propose a step toward reverse-engineering QDI logic by
developing techniques to invert Martin Synthesis for control
circuits. This process can be used for a number of different
applications, including (i) verifying that asynchronous circuits
correspond to their higher-level specifications, especially in the
context of manual design; (ii) evaluating the impact of circuit
optimizations on high-level design; (iii) reverse-engineering
circuits. We have built a tool to automatically apply the
proposed inverse transformations, and have used it to reverse-
engineer a number of different QDI circuits from the literature.

II. MARTIN SYNTHESIS FOR CONTROL

We summarize the stages of the Martin Synthesis approach
to QDI circuit design. The procedure starts with circuits
described using the CHP notation (see Appendix A). To
create efficient circuits, backtracking between stages may be
required, but for any circuit created by Martin Synthesis there
exists a strictly forward path. In the description that follows,
we have introduced two additional steps in the synthesis
procedure: (i) the introduction of Two-phase CHP [7], and
(ii) the introduction of the partitioned repetitive event-rule
system (PRER), a derivation of structures used for timing anal-
ysis [8]. These steps make aspects of the synthesis procedure
more explicit without changing the procedure itself. They also
introduce certain limitations which restrict our description to
the design of control circuits.1

A. CHP ⇒ Two-phase CHP

Most QDI systems implement channel actions with four-
phase handshakes as these have been found to allow for
effective and efficient circuits, especially when handshakes are
allowed to overlap [9]. Two-phase CHP [7] was created to
analyze these overlaps.

The translation from CHP to Two-phase CHP is straightfor-
ward. Each CHP channel action, C , is replaced with two Two-
phase CHP channel actions C ↑;C ↓, known as the up-going
and down-going channel action, respectively. For data-carrying
channel actions, the up-going channel action is defined as
the action which sets a delay-insensitive encoding of data to
a valid state, and the down-going action is defined as the
one that resets it to a neutral state. These communication
actions may be passive (beginning with a wait) or active

1This is not a limitation of Martin synthesis, but rather a limitation we have
introduced to simplify the inverse synthesis problem in this paper.



(beginning with a state change). Martin Synthesis permits
delaying the down-going action of the handshake, though it
cannot be delayed such that it passes the next up-going action
on this channel [3]. This procedure is known as reshuffling,
and incorrect reshuffling can lead to deadlock.

One difference between the procedure we present here and
Martin Synthesis without the transformation to Two-phase
CHP is the use of the ? operator instead of the • operator for
simultaneous composition of channel actions. The • operator
does not have a well-defined Two-phase CHP definition,
whereas ? is defined as:

C ?D . C ↑ ?D↑;C ↓ ?D↓

If channel actions are composed together with ? at most one
of the channels can be active [7].
Example. The D-element is a commonly used component
in QDI control circuits. This circuit corresponds to the CHP
program and Two-phase CHP program shown below:

*[L;R] . *[L↑;L↓ ? (R↑;R↓)]

B. Two-phase CHP ⇒ HSE

The next step in Martin synthesis is the creation of hand-
shaking expansions (HSE). HSE is a strict subset of CHP,
where all variables are Booleans. This implies that all channel
actions have been expanded into sets and waits on Boolean
variables that implement the channel. When translating to
HSE, all computations on non-Boolean variables are first
translated into Boolean actions. This is done using standard
data representation techniques [10]. After this translation has
been made, delay-insensitive data encodings and passive/active
assignments are determined for each channel, and each channel
is translated into its respective representations. For dataless
channels, with output co and input ci, this expansion takes
one of the following forms:

C ↑ . co↑; [ci] (active)
C ↑ . [ci]; co↑ (passive)
C ↓ . co↓; [¬ci] (active)
C ↓ . [¬ci]; co↓ (passive)

Two further invisible transformations are allowed at this
level: (i) Fresh, local variables can be added to the com-
putation, but they cannot affect computation or be accessed
by other processes. This is equivalent to the state variable
insertion of Martin Synthesis [3]. (ii) Externally invisible
ordering changes can be made. These include transformations
that do not change the sequence of operations (such as loop
peeling and unrolling [11]), as well as transformations which
reorder sequences of assignments and sequences of waits on
Boolean variables. Reordering a sequence of assignments or a
sequence of waits is permissible because a QDI circuit must
observe variables through wires with arbitrary delay, and thus
would be unable to distinguish such changes.

These two transformations are used in the state assignment
procedure of Martin Synthesis. In this procedure, the HSE is
modified into one where no assignment to variables can be
reached in two distinct program positions.

Example. The HSE corresponding to the Two-phase CHP for
the D-element is given below. Note that it includes a state
variable z introduced to enable production rule synthesis [3].

*[[li]; z↑; lo↑; [¬li]; ro↑; [ri]; z↓; ro↓; [¬ri]; lo↓]

C. HSE ⇒ PRER

Translation from HSE to a partitioned repetitive event-rule
system (PRER) is only defined for non-terminating HSE (those
that include a single infinite loop) or HSEs without any loops.
This does not limit the class of circuits we can design, as
programs can be re-written to satisfy this constraint [12]. The
definition is also limited to HSE without vacuous sets and
waits, which are defined as ones whose removal will not affect
the reachable states or delay a computation. This also does
not add any effective limits, and is a reasonable restriction for
control circuits.

Partitioned Repetitive Event Rule (PRER) systems are a
novel structure introduced here. They are a derivative of
Repetitive Event Rule (RER) systems, which were created
to analyze performance of asynchronous control circuits [8].
A PRER has two event types, wait type events, which wait
for a variable to be equal to a Boolean value, and set type
events, which set a variable to a Boolean value. These events
are connected with rules that represent causality. We forbid
any PRER from having both wait and set events on the
same variable. This constraint is what makes these systems
partitioned—a variable is either one that is set by the PRER,
or one that is set by another and which may predicate events in
the PRER. When events are represented as nodes and the rules
are represented as directed edges, the PRER can be viewed as
a directed graph.

To transform from HSE to PRER, we first create events for
all set actions (set events), and wait events for all waits. As
PRER do not have a representation for selection statements or
logic, all selections statements and logical operations must be
transformed into series or parallel waits and sets. For logical
operations, and corresponds to parallel execution of waits
while or operations where the arguments are exclusive result
in waits on the variables that will be true. This limits the set
of possible HSE that can be represented with a PRER, which
is why this paper focuses on control circuits.

Sequencing constructs from the HSE are used to create
edges. Sequencing between two actions creates direct edges,
which distributes over parallel composition. The infinite loop
construct, *[P], creates an edge from the final event back to
the first event which is labelled as a back edge.

These transformations will not construct a valid PRER if
the HSE contained waits on variables that were also set by the
computation. Fortunately, these waits are either superfluous or
lead to deadlock in the case of most control circuits. If the
variable is never set to a value that would satisfy the wait, the
wait and all of its successors can be removed.

We allow two transformations to be made on the PRER,
which are equivalent to buffer and inverter additions from
Martin Synthesis [3]. Adding a buffer or inverter to a variable



li z↑ lo↑ ¬li ro↑

riz↓ro↓¬rilo↓

Fig. 1. D-Element PRER

is equivalent to adding a successor set event on a fresh variable
to all events on the original variable, and transferring all of
theses nodes’ successors to the fresh nodes.

An isochronic branch of a forked wire is a branch where all
transitions will be acknowledged by another transition. Wiring
branches don’t have a clear parallel in PRER systems, but there
is a clear parallel to transitions. Adding a buffer or inverter
on an isochronic branch is identical to adding a set event on
a fresh variable as a successor to all events (either waits or
sets) on a single variable, and then moving one or more of the
outgoing edges of the original nodes onto these new nodes. If
the new edges are not implied by transitivity, then it must be
the case that all sets on the fresh variable will be acknowledged
by sets on this successor.
Example. Figure 1 shows the PRER system that corresponds
to the D-element handshaking expansion. In this diagram, wait
events are boxed, while set events are not. The initial node is
the one shown on the top left corner.

D. PRER ⇒ PRS

A Production Rule Set (PRS) that implements a PRER is the
PRS that has the same requirements for ordering and causality
as the PRER. The PRS that corresponds to a PRER need not
be unique. The synthesis procedure from PRER to PRS can
use the same technique as conventional Martin synthesis [3],
since the PRER can be viewed as a graphical representation
of the HSE.
Example. The production rules for the D-element are:

z ∨ ri 7→ lo↑
¬z ∧ ¬ri 7→ lo↓

li 7→ z↑
ri 7→ z↓

z ∧ ¬li 7→ ro↑
¬z ∨ li 7→ ro↓

III. INVERSE SYNTHESIS

This section outlines the proposed methods for inverting
all the steps in the synthesis of QDI circuits. We use the
same intermediate representations as the synthesis procedure
outlined in Section II. We also discuss limitations of the
proposed inverse synthesis steps.

A. PRS ⇒ PRER

As PRER are similar to standard repetitive event-rule
systems (RER) [8], algorithms to construct RER can also
construct PRER systems. An example of such an algorithm
is Lee’s Index-Priority Simulation algorithm [13]. These algo-
rithms need to be augmented to label events as being either sets
or waits, but can otherwise be implemented as specified. This

labeling must be specified by the designer for the inversion of
this rule. For systems without shared variables, the wait event
variables will be exactly the channel input variables, making
this a straightforward step. As Index-Priority Simulation is
only concerned with finding cycles, the algorithm was also
augmented for finding the straight-line predecessors to cycles
(pseudorepetitive PRER), and identifying the entry points to
cycles. This was done by ensuring that the PRER initial state
in matched the circuit reset state, and that there were as few
PRER nodes possible between this state and the cycle entry.
In the case where the reset state was in the cycle, edges
connecting to it were labeled as back edges. We automatically
reconstructed the D-element PRER from its production rule
set using augmented index-priority simulation.
Limitations. All QDI PRS without inherent disjunctions can
be transformed back into a PRER [13] though this procedure
is computationally complex. This exposes another limitation
of the approach outlined in this paper—namely, that we apply
the inverse synthesis process to individual control processes
rather than the full system. This is similar to an implicit
limitation in Martin synthesis where handshaking expansions
are converted into PRS one process at a time, thereby avoiding
the construction of the state space for the entire system.

B. PRER ⇒ HSE

To transform from a PRER to an HSE, we first transform
all of the PRER events into HSE events, wait events mapping
to HSE waits, and set events mapping to HSE sets. If the
PRER is pseudorepetitive, we consider the two components
independently. These are combined using the following three
rules:
• If two wait nodes have the same set of successors, these

two nodes are fused together, and become a single node
with their elements combined with and.

• If a HSE has only a single predecessor, and that prede-
cessor has only a single successor, the two HSE nodes
can be fused together, sequencing the predecessor before
the successor.

• If two HSE nodes have the same set of successors and
predecessors, these two HSE nodes are fused together
with parallel composition.

This is sufficient to collapse all properly nested PRER
into a single HSE node. If this node has no successors or
predecessors, it is a straight line HSE. If it is its own successor
and predecessor, it is an infinitely looping HSE. Note that
if the PRER is cyclic, reverse edges must be either ignored
or transformed with the lowest priority. If they are not, the
HSE may be reconstructed incorrectly, as these are the only
indicator for where a loop begins.

Repeatedly applying these transformations to the PRER in
Figure 1 re-creates the handshaking expansion for the D-
element.
Limitations. If the PRER is not properly nested [7], the
transformations given will not be able to derive a HSE. As the
HSE only has parallel and sequential composition operators,
the original embedding must be properly nested. However,



the PRER system could correspond to circuits created by
other procedures that do not use HSE. Finally, the limitations
outlined in Section IIC also apply.

C. HSE ⇒ Two-phase CHP

To reverse the translation of channel actions from Two-
phase CHP, each channel must be labeled as active or passive,
and then match the projection onto each pair of channel action
variable pairs against Table I, duplicated from [7]. This gives
a partial ordering on Two-phase channel actions, which can
be used to reconstruct the Two-phase CHP. We describe a few
extensions to this process below.

First, if a channel is communicated on more than once in a
program, each communication and and its associated channel
variables can be given a fresh names for the sake of the
transformation. Second, if the variables do not fit into the
orderings shown in Table I, they can be reordered under certain
circumstances. Parallel composition of actions on channel
variables can be mapped to any of the possible interleavings.
This parallel composition should be reconstructed to least
restrictive Two-phase CHP allowed, where the Two-phase
compositions are ordered as:

L↑ ‖ R↑ < L↑;R↑ = R↑;L↑ < L↑ ? R↑

Finally, any invisible transformations, as defined in the Two-
phase CHP to HSE section can be made. The transformation
that was found to be the most common was loop peeling,
where a reconstructed HSE had some channel variable set in
its reset state, and subsequent occurrences of this set were
scheduled in the body of the loop.

These transformations must be made such that when re-
constructing the Two-phase CHP, the ordering on channel up
and down going actions is C ↑ ≺ C ↓ for any channel C . If
this is not true, it is not possible to translate back into a CHP
program. This ordering must exist for any properly constructed
HSE, but may not appear in a reconstructed HSE if the reentry
point of the infinite loop was incorrectly determined. In these
cases, a loop peeling that gives the proper channel ordering
must exist if the decompilation is to continue.
Limitations. The methods presented here will not reconstruct
any of the translations of data operations onto Boolean vari-
ables. As there are many possible origins for a Boolean
operation, the specification cannot be reconstructed through
purely uninformed inversions. Additionally, as was stated in
the original paper on Two-phase CHP, to recreate the Two-
phase CHP, the HSE must be properly nested, however, any
HSE that was generated from the synthesis procedure will be
properly nested [7]. It must also be the case that the channel
actions in the HSE contain a correct ordering for all channels.

D. Two-phase CHP ⇒ CHP

In the majority of cases transforming from Two-phase CHP
to CHP is done by replacing the up-going channel action with
the full channel action, as its position in the computation must
not have been modified.

TABLE II
EXAMPLE STAR COMPOSITION TO PROBES. IN THIS TABLE, × IS BEING

USED TO RANGE OVER ALL NON-? COMPOSITION OPERATORS (E.G. ;)

C Passive, D Active C↑ ? D↑;C↓ ×D↓

.[C];D ;C

C and D passive, E active C↑ ? D↑ ? E↑;C↓ × D↓ × E↓

.[C ∧D];E ; (C ‖ D)

C passive, D and E active C↑ ? (D↑ ‖ E↑);C↓ × D↓ × E↓

.[C]; (D ‖ E);C

C passive, D and E active C↑ ? (D↑; E↑);C↓ × D↓ × E↓

.[C]; (D ;E);C

The one exceptional case is when two up-going channel
actions are composed with ?. If the down-going channel
actions are also composed with ?, then the full channel actions
can be consider to occur at the same program point as the up-
going actions, composed with ?. If the down-going actions
are not composed with ?, then the translation used is the
following steps in sequence: (i) wait for all the probes on the
passive channels to be true; (ii) execute the operations on the
active channels (composed as in the original up-going actions);
(iii) complete the communication on the passive channels in
parallel. Examples are shown in Table II.
Limitations. The procedure defined here does not preserve
deadlocking behavior (since the second half of the synchro-
nization is erased). Any deadlock would have to be identified
at the Two-phase CHP level of abstraction, through existing
techniques [7].

IV. APPLICATIONS

We have created a tool which automatically applies the
reverse steps detailed in the previous section, and have suc-
cessfully applied it to the control circuits that are used in two
compilation procedures in the literature: (i) Syntax Directed
Translation [14], and (ii) the Tangram synthesis approach [15].
These two systems were chosen as the primitives are within
the limits to the analysis proposed, their synthesis was not
conducted by the authors, and their reverse engineerings are
simple enough to present here. Beyond these examples, we
have successfully applied the decompilation tool to dataless
control buffers of the PCHB, PCFB, and WCHB families [9],
as well as larger straight-line sequencing with several hundred
possible reachable state assignments.

A. Syntax Directed Translation

F

lo

li ri

ro

Fig. 2. The D-Element

In the Syntax Directed Translation process presented in [14]
sub-processes are decomposed automatically into smaller pro-



TABLE I
HSE AND MAPPINGS TO RESHUFFLED TWO-PHASE COMMUNICATIONS

L Passive, R Passive L Active, R Active L Active, R Passive

[li]; lo↑; [ri]; ro↑ . L↑; R↑

[li ∧ ri]; lo↑ ‖ ro↑ . L↑ ? R↑

[ri]; ro↑; [li]; lo↑ . R↑; L↑

lo↑; [li]; ro↑; [ri] . L↑; R↑

lo↑ ‖ ro↑; [li ∧ ri] . L↑ ‖ R↑

ro↑; [ri]; lo↑; [li] . R↑; L↑

lo↑; [li ∧ ri]; ro↑ . L↑; R↑

lo↑; [ri]; ro↑; [li] . L↑ ‖ R↑
[ri]; lo↑; [li]; ro↑ . L↑ ? R↑

[ri]; ro↑ ‖ lo↑; [li] . R↑; L↑

In this table, an up-going action is being used as shorthand for up and down going actions. The same transforms apply. As ‖ and ?
commute, L Passive, R Active is identical to L Active, R Passive with renaming.

cesses, and then re-connected with a D-element (see Figure
2). For sequential composition, this corresponds to the trans-
formation:

∗[S0;S1] . ∗[C̄0 → S0;C0?]
|| ∗[C̄1 → S1;C1?]
|| D(C0, C1)

where the D-element is shown in Figure 2. The F-element in
Figure 2 is simply:

li 7→ z↑
ri 7→ z↓

This allows us to translate the D-element circuit into a PRS.
In this PRS, the pair of wires on the left is addressed as li
and lo, and the ones on the right as ri and ro, making up the
channels L and R, respectively.

We used this D-element as the working example when
explaining Martin Synthesis, as well as the proposed inverse
synthesis approach. When augmented with an environment and
a reset on z, our tool can create the PRER system shown
in Figure 1. This in turn was automatically inverted into the
correct handshaking expansion, which in turn was converted
into the correct Two-phase CHP. Finally, the Two-phase CHP

*[L↑;L↓ ? (R↑; R↓)]

can be correctly converted into:

*[L;R]

As these are dataless channels, they can be freely assigned to
sends by labeling the outputs as data, creating the CHP:

*[L!;R!]

which matches the original CHP used for the D-element.

B. Tangram Control Circuits

The Tangram compilation method has been successfully
used to create several asynchronous chips by mapping from a
CSP-derived source language down to circuit primitives [15].
The validity of this mapping was argued by giving specifica-
tions for the primitives and showing that, if these specifications
are followed, the final decomposition will be a valid imple-
mentation of the original program [16]. In this section, we use
the decompilation tools and techniques we have developed to
show that an interesting selection of the Tangram primitives

C

a0

b1

b0

a1

b0

b1

a0

a1
• S ◦

a) Circuit Diagram b) Schematic Icon

Fig. 3. Tangram S Element

implement their specifications. For the sake of compactness,
we do not present the PRER for the Tangram primitives.

TABLE III
MAPPING FROM TANGRAM SPECIFICATION TO TWO-PHASE CHP

Name Tangram Two-phase CHP
Specification

Up-going Action∗ a↑•
∣∣ b↑◦ A↑!

∣∣ B↑?
Down-going Action∗ a↓•

∣∣ b↓◦ A↓!
∣∣ B↓?

Sequential Composition T ;U P ;Q
Parallel Composition — P ‖ Q
Simultaneous Composition a : b A ? B
Infinite Loops #[T ] *[P]
∗Tangram specifications indicate if a channel is active or passive.

Here, that is indicated in Two-phase CHP by labeling as a send or
receive, respectively. This mapping is arbitrary.

The primitives are specified in terms of circuit diagrams,
Tangram diagrams and a CSP-like specification. The circuit
diagrams are directly translatable into PRS and the Tangram
diagrams give indications for which channels should be con-
sidered passive (indicated with a bubble) and active (indicated
with a filled-in circle). The written specifications have direct
translations into Two-phase CHP, detailed in Table III. All of
these circuits are specified to be strongly initializing meaning
they need no additional circuitry to reset to the correct state
given that their inputs were reset to the correct state.

1) S-Element: The S-Element is a circuit element that is
used to build up other Tangram primitives. The circuit diagram
and the symbol that will be used to represent it are shown in
Figure 3. It is described as being similar to the D-element [14],
and with Two-phase specification:

*[A↑? ? (B↑!;B↓!);A↓?]

When we pass the PRS for the S-element circuit through our
tools, the HSE derived (where z indicates the output of the
C-element, and with variables renamed to indicate input and



output) is:

*[[ai]; bo↑; [bi]; z↓; bo↓; [¬bi]; ao↑; [¬ai]; z↑; ao↓]

This HSE can be passed through the next phase of decompi-
lation, creating the Two-phase CHP:

*[A↑? ? (B↑!;B↓!);A↓?]

which is identical to the Two-phase CHP specified by the
Tangram flow. Using this description, we can see that it is
subtly different than the D-element. The S-element requires the
entire active handshake to be enclosed in the up-going action
of the passive handshake, while the D-element requires the
active handshake be enclosed by the down-going action. These
are symmetric, but represent distinct CHP. The S-element CHP
follows:

*[[A];B !;A?]

2) Repeater: The repeater is a source for active channel
b, activated by passive channel a. The translation of its
specification into Two-phase CHP follows:

A↑? ? (*[B↑!; B↓!])

Given an all-low reset, the circuit shown in Figure 4 can be
inverted to result in the HSE:

[a0]; *[b0↑; [b1]; b0↓; [¬b1]]]

This HSE cannot be decompiled further by the procedures
presented above into pure channels. This is because the Two-
phase action on A never completes. One way to proceed is to
simply convert the wait into a probe on the channel. With this
approach, we can obtain the Two-phase CHP and CHP shown
below:

Two-phase ≡ [A]; *[B↑!;B↓!]
CHP ≡ [A]; *[B !]

These are correctly infinite sources on B that are predicated
on A. However, they will never acknowledge the first Two-
phase action on A, so the Two-phase CHP does not precisely
match the Tangram specification. If we erase unreachable
actions from the Tangram specification, then the Two-phase
CHP matches exactly.

3) Sequencer: Two specifications are given for the se-
quencer:

#

a

b

a0 a1

b1b0

a) Tangram Diagram b) Circuit Diagram

Fig. 4. Tangram Repeater
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Fig. 5. Tangram Sequential Element
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Fig. 6. Tangram Parallel Element

*[A↑? ? (B↑!;B↓!;C ↑!);A↓? ? C ↓!]

*[A↑? ? B↑!;A↓? ? (B↓!;C ↑!;C ↓!)]

However, only the circuit shown in Figure 5 is given
as an implementation. We can invert the production rules
corresponding to the Tangram circuit into the following HSE:

*[[a0]; b0↑; [b1]; b0↓; [¬b1]; c0↑;
[c1]; a1↑; [¬a0]; c0↓; [¬c1]; a1↓]

This was automatically inverted to construct the following
Two-phase CHP:

*[A↑? ? (B↑!;B↓!;C ↑!);A↓? ? C ↓!]

Which represents the first specification, and is thus a correct
implementation. This translates into the CHP:

*[[A];B !;C !;A?]

4) Par: The Par element, shown in Figure 6, is used
to compose two actions in parallel. No explicit Two-phase
specification is given, but it is described as a structure where
a handshake on A encloses parallel handshakes on B and C.

We can decompile this circuit using our flow, representing
the outputs of the S-elements connected to B as z, and to C
as y, we derive the HSE:

*[[a0]; ((b0↑; [b1]; b0↓; [¬b1]; z↑)
‖ (c0↑; [c1]; c0↓; [¬c1]; y↑));

a1↑; [¬a0]; (z↓ ‖ y↓); a1↓ ]

This decompiles to the Two-phase CHP

*[A↑? ? ((B↑!;B↓!) ‖ (C ↑!;C ↓!));A↓?]

and finally, to the CHP:

*[[A]; (B ! ‖ C !);A?]



This CHP corresponds to the textual description of the Par
operation.

5) Non-Receptive Mixer: The Tangram non-receptive mixer
element depicted in Figure 7 is a structure for joining two
channels into a single channel, it has a requirement on its
usage that the environment must guarantee that the two input
channels are accessed strictly sequentially. Given that, it can
be considered as the superposition of two specifications:

*[A↑? ? C ↑!;A↓? ? C ↓!]

*[B↑? ? C ↑!;B↓? ? C ↓!]

Decompiling the circuit in conjunction with the partial envi-
ronments corresponding to these two scenarios allows the tool
to derive:

*[[a0]; c0↑; [c1]; a1↑; [¬a0]; c0↓; [¬c1]; a1↓]

*[[b0]; c0↑; [c1]; b1↑; [¬b0]; c0↓; [¬c1]; b1↓]

These can be decompiled into the Two-phase CHP pro-
cesses:

*[A↑? ? C ↑!;A↓? ? C ↓!]

*[B↑? ? C ↑!;B↓? ? C ↓!]

which correspond to the specifications given. A more detailed
reconstruction may recombine them to the CHP

*[[A −→ B !; A?
[]B −→ C !; A?
]]

However, this selection-statement reconstruction is not per-
formed by the current version of the decompilation tool that
we have developed.

6) Join: The Tangram join element, shown in Figure 8, is
the dual of the par element, taking communications on A and
B and enclosing them in C. We can derive the HSE from the
circuit to obtain:

*[ [a0 ∧ b0]; c0↑; [c1]; (a1↑ ‖ b1↑);
[¬a0 ∧ ¬b0]; c0↓; [¬c1]; (a1↓ ‖ b1↓) ]

This decompiles to the Two-phase CHP:

*[ A↑? ? B↑? ? C ↑!;A↓? ? B↓? ? C ↓!]

which corresponds to the CHP:

|
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b1

b0

C C

a) Tangram Diagram b) Circuit Diagram

Fig. 7. Tangram Non-Receptive Mixer Element
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a b
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a0

c0 c1
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C

a) Tangram Diagram b) Circuit Diagram

Fig. 8. Tangram Join Element

*[ A? ? B? ? C ! ]

One given requirement of the join element is that when the
B and C ports are connected to the B and C ports of the
par element, the communication proceeds. This is the case
for this CHP, and so we say that this circuit implements the
specifications given.

V. CONCLUSIONS AND FUTURE WORK

We have discussed and given inversions for each stage of
Martin Synthesis, dividing up stages when this was found to
give more natural inverse transformations. These inversions
have been composed together to produce a decompilation tool,
which has been successfully applied to reconstruct specifica-
tions of QDI circuits with only limited information about the
original specification. We showed how the approach could be
applied to construct CHP-language specifications for a number
of different control circuits.

The analysis here is limited to non-inherently disjunctive
systems, but could be extended using methods similar to the
Extended Repetitive Event Rule extension of Repetitive Event
Rule Systems [13]. Outside of the examples presented in this
paper, it has been used to verify the sequencing of simple
data-carrying circuits, but currently cannot reconstruct non-
trivial data-carrying elements or complex selection statements.
Future work will be focused on more general reconstruction
that includes data as well as selection statements.
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APPENDIX A

Here we informally present the notation we use to describe
QDI asynchronous circuits. A formal trace-tree based seman-
tics can be found in [17].

A. CHP

As convention, variables are ranged over by lowercase
letters, a, b, c . . ., channels are ranged over by uppercase
letters from the beginning of the alphabet, A,B ,C . . . , and
programs or program segments are ranged over by uppercase
letters from the second half of the alphabet, P ,Q ,R . . .

• Skip: skip. This statement does nothing.



• Assignment: x := E . This statement means “assign the
value of expression E to x .” The statements x↑ and x↓
are shorthand for x := true and x := false, respectively.

• Communication: A!e is a statement meaning “send the
value of e over channel A,” and B?x means “receive a
value over channel B and store it in variable x .” Both
sending and receiving are blocking.

• Selection: [G1→ P1[]...[]Gn→ Pn], where each Gi is
a boolean expression, and each Pi is a statement. This
statement is executed by waiting for one of the guards
to be true, and then executing one statement with a true
guard. If the guards are not mutually exclusive, we use
the thin bar (|) instead of the thick bar ([]). [G] is used
as a shorthand for [G → skip].

• Repetition: *[G1→ P1[]...[]Gn→ Pn]. This statement
is executed by choosing one of the true guards and
executing the corresponding statement, repeating until all
guards evaluate to false. If the guards are not mutually
exclusive, we use the thin bar (|) instead of the thick bar
([]). *[P] is used as a shorthand for *[true→ P].

• Probe: The boolean A is true if and only if a commu-
nication on channel A can complete without suspending.
Probes are only allowed to occur in the guards of selec-
tion statements.

• Sequential Composition: P ;Q . This statement means
“execute statement P , and then execute statement Q .”

• Parallel Composition:P ‖ Q . This statement means
“execute statement P , while simultaneously executing
statement Q .”

• Simultaneous Composition: P ? Q . This statement
means “execute channel actions P and Q such that they
begin and complete simultaneously.” This composition
was introduced in [7] and replaces • composition of
Martin [3]. Unlike the • composition, it has a well-defined
definition in Two-phase CHP, and will deadlock when
composed in parallel with itself. ? binds more tightly
than ;, which in turn binds more tightly than ‖.

Weak Fairness Concurrent execution of CHP processes is
assumed to be weakly fair, meaning that every continuously
enabled action will eventually be given a chance to execute.

B. HSE

Handshaking Expansion (HSE) is a subset of CHP, where
all actions on channels (communication, probes) are translated
into Boolean variables, and all non-Boolean data representa-
tions are given Boolean representations.

C. PRS

A Production Rule Set (PRS) is a set of production rules,
each of the form:

G 7→ t

where t is a simple boolean assignment, and G is a boolean
expression, known as the guard of the production rule. We
require a few properties of a valid PRS:

• Non-Interference Production rules G+ 7→ x↑ and
G− 7→ x↓ are said to be non-interfering in a computation
if and only if ¬G+ ∨ ¬G− is an invariant of the com-
putation. A valid PRS must only contain non-interfering
rules, as interfering rules correspond to a short circuit.

• Stability A production rule G 7→ t is said to be stable
in a computation if and only if G can change from true
to false only after the assignment on t has completed. A
valid QDI PRS will only contain stable production rules.

A PRS is executed as a state transformer, where any of
the rules whose guards are satisfied by the current state may
execute, modifying the state with their associated boolean
assignment.
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