
Fault Detection and Isolation Techniques for Quasi Delay-Insensitive Circuits

Christopher LaFrieda and Rajit Manohar
Computer Systems Laboratory

Cornell University
Ithaca NY 14853, U.S.A.

Abstract

This paper presents a novel circuit fault detection
and isolation technique for quasi delay-insensitive asyn-
chronous circuits. We achieve fault isolation by a com-
bination of physical layout and circuit techniques. The
asynchronous nature of quasi delay-insensitive circuits
combined with layout techniques makes the design toler-
ant to delay faults. Circuit techniques are used to make
sections of the design robust to non-delay faults. The com-
bination of these is an asynchronous defect-tolerant circuit
where a large class of faults are tolerated, and the remain-
ing faults can be both detected easily and isolated to a
small region of the design.

1. Introduction

Quasi delay-insensitive (QDI) circuits are asynchronous
circuits that operate correctly regardless of gate delays in
the system. These circuits do not use any clocks, and the
function of the clock is replaced by handshaking signals
on wires. Instead of using time to implement sequencing
(via the clock), QDI circuits use the notion of causality and
event-ordering.
QDI systems exhibit many advantages over clocked de-

sign. QDI circuits can be used to design complex, highly
concurrent systems that are low-power and exhibit average-
case behavior [11]. The very nature of QDI circuits—
namely, that they are insensitive to gate delays—makes
them well-suited for fault-tolerant design, because most de-
lay faults do not cause the circuit to malfunction. However,
while there is an enormous body of literature that exam-
ines different types of faults for clocked circuits, little atten-
tion has been paid to the problem of faults in asynchronous
VLSI systems. This paper provides an in-depth examina-
tion of faults in the context of QDI circuits, and proposes
several methods for fault detection and isolation.
The absence of a global clock means that a faulty asyn-

chronous circuit might exhibit problems that would not nor-

mally arise in a clocked system. In some sense, faults in
control signals in asynchronous logic would be analogous
to faults in data as well as clock lines in a clocked sys-
tem. Faulty asynchronous circuits can behave quite differ-
ently than faulty synchronous circuits. Asynchronous cir-
cuits consist of many state-holding nodes (dynamic nodes
with keepers) and handshaking signals. A fault in an asyn-
chronous system can cause computations to occur out-of-
sequence; this could violate an event-ordering constraint re-
quired for correctness, leading to a circuit failure. A fault
might prevent some computation from occurring by pre-
venting a signal transition and causing deadlock.

Fault detection in QDI circuits requires new techniques
than those used in synchronous architectures. To illustrate
this, consider the concept of introducing redundancy in the
system by using error detecting/correcting codes. These
codes contain data bits and check bits which are periodically
compared using hardware known as checkers. If the data is
consistent with the check bits then it is assumed that no er-
ror exists. If the check bits are inconsistent with the data,
then an error is detected and possibly corrected [5]. Un-
fortunately, this approach might not work well with asyn-
chronous circuits as many faults can cause deadlock, pre-
venting some data/check bits from appearing on the out-
put. In a clocked system where we assume the clock always
works, one can always sample the output of the circuit at the
clock edge and use those values. In contrast to this, asyn-
chronous signaling protocols embed data validity in the sig-
nal values themselves, leading to invalid state faults or sim-
ply deadlock. (Note that a similar problem could arise in a
clocked system when part of the clock network has a fault.)

In this paper we present a set of techniques for both de-
tecting and isolating faults in asynchronous QDI circuits.
We begin with an overview of both our gate model, QDI cir-
cuits, and fault model (Section 2). We examine the effect of
the faults on the behavior of asynchronous circuits, and de-
termine the types of failures that can result from faults (Sec-
tion 3). We introduce techniques that improve the fault de-
tection capability of QDI circuits (Section 4), and examine
the implementation of these techniques in an asynchronous



pipeline (Section 5). Finally, we provide an overall sum-
mary of the results (Section 6).

Related Work. Previous analysis of faulty/mis-behaving
asynchronous circuits has been done using the stuck-
at-0/stuck-at-1 fault model [3]. This work examines
the effects of stuck-at faults in delay-insensitive, quasi
delay-insensitive, and speed independent circuits. Test-
ing QDI circuits, using the stuck-at model, is thoroughly
explored in [2]. This testing method classifies a fault as ei-
ther inhibiting (preventing an action) or stimulating (caus-
ing an action), identifies faults that can’t be observed,
and describes a technique to make all faults observ-
able by adding testing points. A technique to mask transient
faults that occur in asynchronous, speed independent, in-
terfaces is described in [14]. This technique employs the
use an adjudicator to mask transient faults between a cir-
cuit and the environment.
Our work examines a robust class of faults, including

process and reliability, and examines the effect of transient
faults. Perhaps the most important distinguishing feature of
our approach v/s the previous work is that our fault de-
tection techniques can be applied at any granularity—at a
single bit level, at the function block level, at the pipeline
stage level, etc. depending on the granularity of fault isola-
tion required. However, previous asynchronous fault detec-
tion techniques focused on making stuck-at faults externally
visible without attempting to isolate them, and the granular-
ity of fault detection could not be controlled.

2. Sources of Faults and Fault Modeling

Faults can occur at any point in an integrated circuit’s
lifetime. Faults that occur during fabrication are known as
process faults. Process faults can directly cause failures or
can result in devices with a short lifespan. Faults that cause
devices to fail early in their lifetime are known as reliabil-
ity faults. Since reliability faults behave like delay faults be-
fore they fail and like process faults after they fail, we won’t
consider them directly. Throughout this paper, we make the
following distinction between faults and failures. Faults are
the physical (electrical) mechanism that may cause a cir-
cuit to malfunction. Failures are the actual deviant behav-
iors that result from faults. For example, let’s say a process
fault converts a static node into a dynamic one. Such a cir-
cuit may cause transient failures because it fails at random
time intervals depending on noise, however, the fault itself
always exists. Soft-errors such as EM noise, crosstalk, and
alpha particle radiation will have a similar effect.
In this section we discuss asynchronous QDI circuits,

provide a description of the circuit notation, and explain
some of their key properties that make them suitable for
fault detection. We continue by discussing sources of faults,

and the way we model the effects of these faults on a QDI
circuit in terms of a transformation on the circuit itself.

2.1. QDI Circuits

QDI circuits are implemented as a network of gates,
where each gate consists of a pull-up network implemented
with p-transistors, and a pull-down network implemented
with n-transistors. Logically, we can think of a gate as cor-
responding to two Boolean predicates: G+, the condition
that causes its output ν to be connected to the power sup-
ply (VDD , interpreted as the logic “true” or 1 value in any
Boolean expression), and G−, the condition that causes its
output ν to be connected to ground (GND, interpreted as
the logic “false” or 0 value in any Boolean expression).
We denote this gate using the production rule (PRS) no-
tation [9] as follows:

G+ �→ ν↑
G− �→ ν↓

Using this notation, a two-input NAND gate would be spec-
ified as follows:

¬a ∨ ¬b �→ out↑
a ∧ b �→ out↓

where “∧” denotes the Boolean AND, “∨” denotes OR, and
“¬” denotes logical negation. A restriction on production
rules is that bothG+ andG− must never be true at the same
time, because this would result in a short-circuit. This con-
dition is known as non-interference.
If G+ and G− are complements of each other, then the

gate output is always connected to a power supply. This
corresponds to a conventional static CMOS gate and is re-
ferred to as a combinational gate. If there is a state when
both G+ and G− are false, then in this state the output
does not change. If this occurs, then the gate is said to be
state-holding. State-holding gates always contain a stati-
cizer (a.k.a. a keeper) on their output to prevent the gate
output from changing due to leakage or noise.
A fork in a circuit corresponds to an output of a gate be-

ing used as the input to more than one gate. Each connection
from a gate output to a gate input is referred to as a branch
of the fork. We say that a branch of the fork is isochronic
if we must make a delay assumption about the relative de-
lay of the branch of the fork relative to the other branches of
the same fork (a detailed technical discussion can be found
in [10, 7]).
A circuit is said to be QDI if it operates correctly re-

gardless of the delays of the gates or wires that implement
it, with the exception of wires that implement isochronic
branches [10, 7]. It has been established that for an asyn-
chronous circuit to be hazard-free under the QDI model, ev-
ery signal transition must be acknowledged by a transition



on the output of some gate it is connected to [10]. In partic-
ular, this means that a signal cannot make a 0 → 1 → 0
transition without an intervening transition on the output
of some gate that it is connected to. This condition can be
translated into a semantic check on the production rules [7],
and this check can be used to determine if a circuit is QDI.
A commonly occurring gate in QDI circuits is the two-

input C-element. A C-element is state-holding, and is de-
scribed by the following production rules:

a ∧ b �→ c↑
¬a ∧ ¬b �→ c↓

A C-element could also be inverting, in which case the c↑
and c↓ transitions are interchanged. This can be generalized
to an n-input C-element by and-ing additional terms to both
the pull-up and pull-down.
This acknowledgment property translates to the follow-

ing result [2]: a stuck-at-0/stuck-at-1 fault on the output of
any gate in a QDI circuits results in deadlock. This is in-
tuitively obvious from the description of acknowledgment
described above. However, other faults can cause more sub-
tle errors in QDI circuits. We discuss these situations in the
next section, providing production-rulemodels for each cat-
egory of fault.
There is a well-established synthesis method for QDI

asynchronous circuits [9]. Production rules can be gener-
ated that guarantee both non-interference and hazard-free
behavior by “compiling” a description of the asynchronous
computation expressed in a programming notation. The no-
tation, called “handshaking expansions,” (HSE) describes
the sequence of waits and actions that must be performed
by the asynchronous circuit. For instance, the sequence
*[L↑; [¬Le];L↓; [Le]] can be read as follows: repeat the
following sequence forever (the outer *[..]): set L high;
then wait for Le to be low; then set L low; then wait for Le

to be high. The ”;” here denotes sequential actions, while a
”,” would denote parallel actions. This sequence describes a
four-phase handshake protocol on a pair of wires L and L e .

2.2. Process Faults

Process faults are those faults which occur during fabri-
cation. Process faults can be either global or local in nature.
Global disturbances, such as mask misalignment, will more
than likely damage an entire wafer. Local disturbances,
however, usually only causes damage to a small number of
devices. Local disturbances result from contaminants intro-
duced during the various process steps. Contaminants will
result in extra or missing material depending on the contam-
inant size, location, and the processing step in which it’s in-
troduced [4].
Figure 1 shows a few examples of process faults. Fault

(a) is a short in the metal one layer caused by a contaminant

Figure 1. Process faults occurring in a cmos
n-well process: (a) is a metal one short, (b) is
a metal one open, and (c) is an open via.

that was introduced before metal layer one was etched, but
after photoresist was applied. The contaminant prevented a
section of photoresist from being exposed, which protected
the underlyingmetal from being etched. Fault (b) is an open
in metal one that is caused by the presence of a contami-
nant before metal one deposition. This contaminant creates
a raise in the metal one material that is deposited on top of
it. When resist is spun on, it fails to cover this raised por-
tion andmoremetal one is etched than should be. Fault (c) is
an open in a diffusion contact via. A contaminant blocked,
or partially blocked, the via and prevented deposited metal
from making contact with the diffusion.
The most common model used for process faults is the

stuck-at fault model [1]. The stuck-at model is attractive be-
cause it considers faults at the gate level, rather than the
transistor level, which makes test pattern generation easy.
However, the stuck-at fault model doesn’t model bridg-
ing faults, open faults or transistor level faults well. Table
1 shows the resulting production rules for some stuck-at
faults. Since many gates in asynchronous circuits are C-
elements, it is common for any stuck input to result in a
stuck output.

Fault Class Original PRS Resulting PRS

Output G+ �→ ν↑ ¬VDD �→ ν↑
Stuck-at-0 G− �→ ν↓ VDD �→ ν↓
Output G+ �→ ν↑ ¬GND �→ ν↑
Stuck-at-1 G− �→ ν↓ GND �→ ν↓
Input ¬x ∧ G+ �→ ν↑ G+ �→ ν↑

Stuck-at-0 x ∧ G− �→ ν↓ GND �→ ν↓
Input ¬x ∧ G+ �→ ν↑ ¬VDD �→ ν↑

Stuck-at-1 x ∧ G− �→ ν↓ G− �→ ν↓

Table 1. Mapping of stuck-at process faults to
resulting PRS.

Table 2 contains some classes of faults that might not be
detected using the stuck-at fault model. Bridging faults may
result in production rules that are interfering (their pull-up
network and pull-down network are both active). The result-



ing voltage level will depend on the driving strength of each
network and the resistance of the bridge itself. When the
pull-up or pull-down networks are active exclusively, this
node will be logically high or low respectively. The stuck-
on fault may cause interference if G+ and G− can be si-
multaneously true. Without having to wait for ¬x , this pro-
duction rule may also result in a premature firing of ν. The
first PRS for the stuck-open fault is essentially the same as
the last stuck-at example in Table 1. The second PRS, how-
ever, may have turned a non-state-holding node into a state-
holding node.

Fault Class Original PRS Resulting PRS

Bridging G+
0 �→ ν0↑ G+

0 ∨ G+
1 �→ ν0, ν1↑

(ν0 ↔ ν1) G−
0 �→ ν0↓ G−

0 ∨ G−
1 �→ ν0, ν1↓

G+
1 �→ ν1↑

G−
1 �→ ν1↓

Stuck-On ¬x ∧ G+ �→ ν↑ G+ �→ ν↑
(¬x) x ∧ G− �→ ν↓ x ∧ G− �→ ν↓

Stuck-Open ¬x ∧ G+ �→ ν↑ ¬VDD �→ ν↑
(¬x) x ∧ G− �→ ν↓ x ∧ G− �→ ν↓

Stuck-Open ¬x ∨ G+ �→ ν↑ G+ �→ ν↑
(¬x) x ∧ G− �→ ν↓ x ∧ G− �→ ν↓

State-Holding G+ �→ ν↑ G+∨
(G+ �= G−) (G+ ∧ G− ∧ ¬ζ(t)) �→ ν↑

G− �→ ν↓ G−∨
(G− ∧ G+ ∧ ζ(t)) �→ ν↓

Table 2. Mapping of non-stuck-at process
faults to resulting PRS.

State-holding faults occur for two reasons. One, a non-
state-holding node becomes state-holding in the presence
of a fault. Two, a fault occurs in the feedback circuit that
is maintaining the charge on a state-holding node. It is dif-
ficult to predict the exact behavior of a state holding node
since it will be particularly sensitive to noise. We will make
no assumptions about the time it takes for such a node to
dissipate charge. Instead, we assume that when this node is
state-holding it may be driven high or low by some arbi-
trary unit function ζ(t).

2.3. Transient Faults

Transient faults are those that might occur at some
time t, but are not stable in the sense they might not oc-
cur at other times. Two major causes of transient faults
are crosstalk and radiation. Crosstalk is a mechanism
by which switching wires(aggressors) can induce a volt-
age on other wires(victims). Crosstalk is the result of
both capacitive coupling and inductive coupling. Al-
though crosstalk is somewhat of a design issue, newer tech-
nologies have upwards of six metal layers and it can be
difficult to guarantee that crosstalk faults won’t occur. In-

ductive coupling is particularly challenging since it decays
logarithmically with wire spacing [12], rather than lin-
early like capacitive coupling does. Transient faults due to
radiation occur when a particle strikes some region of a de-
vice and creates a track of electron-hole pairs. If these pairs
collect at a p-n junction, then there will be a resulting cur-
rent pulse.
When considering transient faults, without knowing the

exact geometry of a circuit, we have to consider the pos-
sibility that any node in our circuit can be affected. Every
production rule in the system will be of the form:

G+
n ∨ ζn+(t) �→ νn↑

G−
n ∨ ζn−(t) �→ νn↓

2.4. Delay Faults and Isochronic Branches

If a fault causes a circuit to exceed the circuit’s timing
specifications, but doesn’t affect the circuits logical func-
tion, it is said to be a delay fault. Delay faults can occur due
to the aforementioned sources. Some examples of sources
of delay faults are partial shorts, partial opens, and induced
currents in the opposite direction of switching.
In QDI circuits, delay faults will only cause a logical

fault if they occur on an isochronic branch, since it is the
only place timing assumptions are permissible. All other lo-
cations of delay faults will only change the performance of
the circuit, but not affect its correctness.

Figure 2. An example of an isochronic branch
(state holding element not shown).

An isochronic branch occurs when a wire forks to mul-
tiple gates, and at least one of those gates doesn’t acknowl-
edge a transition on that wire. An example of an isochronic
branch is shown in Figure 2. Initially, both A and B are high,
then A goes low. Since one input of the NAND gate is al-
ready low, when B goes low there is no change in out (it’s
still high). The problem occurs when there is a large delay
in the isochronic branch (labeled iso). When B goes low, the
output of the C-element (the left circuit) goes high. If sig-
nal B at the input of the NAND gate is still high, then it’s
output will go low when it shouldn’t have. We will discuss
a method to avoid these faults in Section 4.



3. Failures in QDI Circuits

QDI systems are collections of communicating hardware
components known as processes [9]. A hardware process
communicates with other hardware processes via synchro-
nization and data channels [9]. Our approach to failure de-
tection focuses on the impact of faults on the behavior of
channels in the asynchronous system. This approach has
several advantages: (i) focusing on channels allows us to
ignore the problems that might occur in complex produc-
tion rules internal to a process; (ii) channels that operate
correctly have a well-defined behavior that is consistent
throughout the asynchronous design; (iii) there is a class
of slack elastic systems whose correct operation only de-
pends on correct channel behavior, and such systems en-
compass entire microprocessors [8]; (iv) channels occur at
the bit-level granularity, as well as the function block or
pipeline granularity in high-performance asynchronous sys-
tems [11]; (v) transient faults can also be treated as er-
rors on channels, thereby leading to a uniform treatment
of the different fault categories. For simplicity, we will as-
sume that channels use a standard four-phase return-to-zero
handshake protocol, and that data is encoded using dual-rail
codes.
Data values and/or synchronization actions that transfer

control and/or data from one hardware process to another
are referred to as tokens. A token is a data item that prop-
agates through a pipeline, and that can be passed from one
process to another via a communication channel.

3.1. Deadlock

Most faults, especially stuck-at faults, will cause asyn-
chronous circuits to deadlock [3][2]. Whenever a fault in-
hibits a transition on a handshakingwire, then deadlock will
occur. Consider the half buffer circuit in Figure 3, where

Figure 3. Precharge half buffer circuit
(PCHB).

the environment communicates with the circuit using hand-

shake protocols on the pairs (L,Le) and (R,Re). In terms
of handshaking expansion notation, the operation of this cir-
cuit can be described as the following sequence [6]:

*[[Re ∧ L];R↑;Le↓; [¬Re];R↓; [¬L];Le↑]
Such circuits are the basis for highly pipelined asyn-
chronous QDI designs [6], so examining this circuit is in-
structive. A stuck-at fault on L, Le, R, or Re will halt the
buffer and the surrounding environment. If an open fault oc-
curs on node 1, then node 4 will be inhibited from mak-
ing an up-transition and R will be stuck-at-1. An open fault
on nodes 2 or 3 will cause R to be stuck-at-0 and sim-
ilarly, an open fault at node 5 or 6 will cause Le to be
stuck-at-0. We can assume that open faults on these nodes
will result in stuck-at faults because their outputs are stati-
cized (their charge is held by the weak transistors in the
inverter labeled “w”).
We can determine the resulting values of each synchro-

nization channel, when a particular fault causes deadlock,
by examining the HSE (handshaking expansion) of the pro-
cess. Annotating the states of this buffer process with the
values of signals {L,Le,R,Re}, we have:

*[{x , 1, 0, x}[Re ∧ L]; {1, 1, 0, 1}R↑;
{1, 1, 1, x}Le↓; {x , 0, 1, x}[¬Re];
{x , 0, 1, 0}R↓; {x , 0, 0, x}[¬L];
{0, 0, 0, x}Le↑]

The states in which the process will halt can be determined
by starting from the beginning of the HSE and stepping
through to the furthest state that can be reached when a tran-
sition is inhibited. Assuming that the process is examined at
t=∞, all the variables will be stable. The values of the chan-
nels for each stuck-at fault are shown in Table 3.When there
is a stuck-at-1 fault on R, it can halt in two different states.
The second state in which R stuck-at-1 halts can occur af-
ter reset, since we can’t make an assumption on how long it
takes the environment to perform Re↑.

Variable Stuck-At-0 Stuck-At-1
L {0,1,0,1} {1,0,0,1}
Le {0,0,0,1} {1,1,1,0}
R {1,1,0,1} {1,1,1,0}

{0,0,1,0}
Re {1,1,0,0} {0,0,1,1}

Table 3. Resulting states, {L,Le,R,Re}, when a
PCHB deadlocks.

3.2. Synchronization Failure

If a handshake on a synchronization channel begins or
ends prematurely, then the process and its environment ex-



perience synchronization failure. When a process is receiv-
ing a synchronization signal, if Le↓ fires before a hand-
shake is complete, then the environment may stop send-
ing the signal before the process has received it. If R↑ fires
when the process has not received a synchronization signal,
then the process may send a synchronization signal when it
shouldn’t have.
Consider, once again, the PCHB of Figure 3. An invalid

synchronization signal may be sent if the production rule for
R↑ fires in any of the following states (which correspond to
the labels in the previous HSE):

*[©1 [Re ∧ L];R↑;Le↓;
[¬Re];R↓;©2 [¬L];©3 Le↑]

The production rules for R↑ are:
¬Re ∧ ¬Le �→ R↑
Re ∧ Le ∧ L �→ R↓
¬R �→ R↑
R �→ R↓

The resulting PRS for faults that cause a premature firing
of R↑ are shown in Table 4. Any variable that can tran-
sition in states ©1 , ©2 , or ©3 may cause R↑ to fire if it’s
bridged to R and makes an upward transition or bridged to
R and makes a downward transition. If the nmos transis-

Fault State Resulting PRS

Bridging(Le↔R) ©2 G+
Le ∨ ¬R �→ R↑

Bridging(Re↔R) ©1 ,©2 ,©3 G+
Re ∨ ¬R �→ R↑

Stuck-On(L) ©1 Re ∧ Le �→ R↓
State-Holding ©1 (Re ∧ Le ∧ L)∨

(Re ∧ Le ∧ L ∧ ζ(t)) �→ R↓
Transient ©1 ,©2 ,©3 (Re ∧ Le ∧ L)∨

ζ
R−(t) �→ R↓

©1 ,©2 ,©3 ¬R ∨ (¬ζR+(t)) �→ R↑

Table 4. PRS for synchronization failures on
PCHB.

tor with L as its input is stuck-on, then the resulting circuit
will constantly send synchronization signals to the environ-
ment since the buffer no longer needs to wait for L↑. Dur-
ing state ©1 , R might only be driven by it’s staticizer and
is therefore vulnerable to noise and power dissipation if its
state-holding element is faulty.

3.3. Token Generation and Token Consumption

Similar to synchronization failures, processes that re-
ceive and send data may generate and consume tokens
(data) in the presence of a fault. Figure 4 is a template
for a computation block based on the half-buffer design
previously discussed [6]. Circuits based on this template

were extensively used in the design of a high-performance
asynchronous microprocessor [11]. Validity and neutrality

Figure 4. Template of a precharge function
unit.

of the inputs and the output are check in (a) and the re-
sult of f0(L0, L1, ..., Ln) is computed and sent in (b). f f

0

and f t
0 are the pull-down networks that determine Rf

0 and
Rt

0, respectively. During fault-free operation, the inputs,
(Lf

0 , Lt
0, ..., L

f
n, Lt

n), and outputs, (Rf
0 , Rt

0), start low and
the enable signal is high. When the inputs arrive, only one

of Rf
0 or Rt

0 will go low and the corresponding output will
go high (assuming thatRe

0 has arrived). After an output goes
high and all the inputs have arrived, the enable signal will
go low and the environment will set the inputs low. If R e

0

has gone low than Rf
0 and Rt

0 will follow and the enable
goes high, returning the circuit to the initial state.
When a fault occurs in this process, the resulting circuit

may deadlock, consume a token, or generate a token. Let’s
assume the circuit is in the state after Rf

0↑ fired. If a fault
causes Rf

0↓ to fire after enable goes low and before the en-
vironment has received the data (0), then this token will get
consumed and the circuit will return to the initial state. The
following token that enters this process may be evaluated
and take the place of the initial token.
If a fault results inRf

0↑ andRt
0↑ firing prematurely, such

as a transient or state-holding fault at node 5 or 6, then a to-
ken will be generated. In addition to generating a logical 1
or a logical 0, there is a third kind of token that can be gen-
erated. Imagine that a fault causes Rf

0↑ to fire just as Rt
0↑

begins to fire. Such a token is considered illegal, however,
many circuits will receive and process this type of token.
The template circuit of Figure 4 makes no distinction be-
tween valid and invalid token and will receive and process
both.

4. Design for Detection

We have shown that faults in asynchronous circuits can
result in deadlock, synchronization failure, token genera-
tion, and token consumption. Of these failure types, dead-



lock is the most desirable because it will prevent an ac-
tion from occurring rather than perform an incorrect action.
Deadlock is also the easiest failure to detect since we only
need to check if a circuit is making forward progress after
some minimum time t. Our approach to improving detec-
tion of the remaining failure types is twofold: One, prevent
all failures from performing incorrect actions. Two, make
all failures result in deadlock. Also, if a fault does not lead
to an observable failure, then for all practical purposes we
can continue to operate as if there was in fact no fault.

4.1. Synchronization Channels

Unlike data, synchronization signals are usually sent in-
dividually from one process to another. In order to make
synchronization failures more detectable, redundancy must
be added to each synchronization channel. We also add an
extra constraint that redundant signals should be produced
in an inverted fashion with respect to the original signal.
This constraint ensures that the resulting circuit is tolerant
of a fault that drives both signals high or low simultane-
ously. A single crosstalk fault may have this affect since
the wires carrying these signals are parallel to one another
and may be long. Although adding redundant signals will
result in at least twice the area, redundant synchronization
channels are feasible because synchronization channels are
a small fraction of the overall design when compared to data
channels.
In order to prevent synchronization failures, a synchro-

nization signal and it’s redundant counterpart must travel to-
gether throughout the circuit. To achieve this, each process
receiving a synchronization signal must wait for both sig-
nals to arrive before performing any action. Figure 5 shows

Figure 5. Redundant synchronization chan-
nels: (a) both signals arrive, (b) top signal
can proceed, (c) bottom signal can proceed.

how redundant synchronization signals travel between pro-
cesses with the numbered wires indicating the order in
which transitions occur. In addition to a left and right set
of handshaking signals, a center set of handshaking signals
(denoted C and Ce) is introduced to ensure that the pro-
cess waits for both synchronization signals.

The HSE for a redundant buffer is as follows (note that
there are two R and L channels, one for the top and one for
the bottom):
HSE for the top portion is:

*[[Re
T ∧ LT ∧C];C e↓;RT↑;Le

T↓;
[¬Re

T ∧ ¬LT ∧ ¬C];C e↑;RT↓;Le
T↑]

HSE for the bottom portion is:

*[[Re
B ∧ LB ∧ C e];C↑; [¬C e];RB↑;Le

B↓;
[¬Re

B ∧ ¬LB];C↓, (RB↓;Le
B↑)]

This buffer takes 39 transistors to implement, with the
added constraint of inverting the bottom signals. This is
more than twice that of the PCHB of Figure 3, which only
requires 18 transistors. This buffer is also somewhat slower
than the PCHB with a forward latency of 4 transitions and
a backward latency of 5 transitions.
Table 5 shows some failures that can occur when the re-

dundant buffer is waiting for data or receiving data. As ex-
pected, this buffer may still cause synchronization failures
when faults cause bothRT ↑ andRB↑ or bothLT ↑ andLB↑
to fire simultaneously. However, an interesting property of

State Premature Firing Resulting Failure
waiting for [LT ∧ LB ] RT ↑ or RB↑ none or deadlock

C↑ or Ce↓ none or deadlock
RT ↑ and RB↑ synch failure

receiving (RT ↑, RB↓) RB↓ none, then deadlock
Le

B↓ deadlock

Table 5. Failures resulting from premature fir-
ings of the redundant synchronization buffer.

this buffer is that it may tolerate some premature firings,
rather than deadlock. For instance, suppose C↑ fires pre-
maturely when the buffer is waiting for LT and LB. When
LT arrives, Ce↓ will fire allowing both RT ↑ and RB↑ to
fire. When RB↓ fires prematurely during the receive state
shown in the table, a fault induced synchronization signal
may take the place of one of the pair. In this case, the ac-
tions that result are still correct since at least one synchro-
nization signal is correct. This system will eventually dead-
lock because the signal that was replaced is trapped in the
buffer.

4.2. Data Channels

The two types of failures, other than deadlock, that have
been shown to occur in data channels are token generation
and token consumption. One could attempt to use the same
solution used for synchronization channels, however, due
to the vast number of data channels, it would be impracti-
cal to make each channel redundant. To detect token gener-



ation, we will exploit the following properties of data chan-
nels: (i) adjacent bits of a data word complete parallel com-
putations in roughly the same time; (ii) a fault might cause
an illegal transition on an output wire, but the correct chan-
nel will eventually go high if given enough time. This can
be detected because the net result will be an illegal state.
In the template of a precharge function block shown in

Figure 4, the true-rail and false-rail of each bit of data is
generated by separate pieces of logic. Legal states are 00,
01, and 10, so a 11 indicates a failure. If a fault causes the
wrong rail of R to go high, then the process receiving that
bit may lower Re causing the function block to reset. How-
ever, if Re is prevented from going low, then the correct
rail will eventually go high as well, assuming that the in-
puts to the function unit were not faulty. If this were always
the case, then we could detect these faults by checking lines
for invalid tokens.
Figure 6 shows a technique to ensure that the correct

rail in each bit of data will be given enough time to fire.
In this diagram, there are n bits of data traveling through k

Figure 6. A pipeline of k full buffer processes
that read and acknowledge data in groups.

columns of full-buffer processes. Each process in a column
performs the same function on the data. The crucial prop-
erty of this design is that the enables of each column are per-
formed together, due to the insertion of C-elements. This re-
sults in each column reading and acknowledging data as a
group.
Suppose a fault occurs in process P01 that causes it’s

true rail to go high. Process P11 will lower it’s Le, but the
intervening C-element will prevent Re in P01 from going
low as well.Re will only go low once the slowest bit of data
in column 0 has been received by column 1. Since the pro-
cesses in each column are the same, this would give the false
rail enough time to go high if it was supposed to. If the fault
caused an error, then the token will be invalid, if not, no er-
ror occurred.
Fortunately, this technique will result in deadlock when

token consumption occurs at the bit level. Consider the case

where each process of column 0 has a token and each pro-
cess column 1 has a token. In this case, the grouped enables
of each column is low and the groupedR e input to each col-
umn is high. Suppose the token in P10 is consumed by a
transient fault, and the token in P00 begins to move into
the P10 process. The bit Le output of P10 will go low,
however, the corresponding Re input of P00 will remain
high due to the intervening C-element. Consequently, the
enable of P10 will remain low indefinitely and as a result
the enable of this entire column will be prevented from go-
ing high. The configuration of Figure 6 introduces the possi-
bility of token deletion at the group level if a transient fault
occurs on the output of the intervening C-element. To rem-
edy this, the C-elements that group the enables are imple-
mented in a redundant fashion wherein each enable input
has a dedicated 3-input C-element. The C-element that gen-
erates the Re

i of a column has Le
i−1, L

e
i , and Le

i+1 of the
following column as inputs.
An important feature of the modified circuit is that all the

C-elements that were introduced have non-isochronic input
and output branches. This means that any permanent fault
on a single wire on those inputs and outputs will result in
deadlock as well.

4.3. Isochronic Delay Faults

It was shown in Figure 2 that a failure may occur if there
is a greater delay on an isochronic branch than on the non-
isochronic branches. A routing solution to prevent these
failures for some subset of isochronic forks is shown in Fig-
ure 7. When there is some non-isochronic branch in a fork
that has an isochronic branch, the solution shown can be
used to prevent delay faults from causing an isochronic fork
to fail. Rather than forking, we can route a signal through

Figure 7. Routing solution to delay faults on
isochronic branches.

the polysilicon of the gate that had the isochronic branch as
an input, then to the gates with the non-isochronic branch
input. A similar technique is used in [13]. Such a solution is
practical since isochronic branches are kept local to a pro-
cess, i.e., they don’t exist on input or output channels. Now a
fault that caused a delay on an isochronic branch will cause



an equal delay on the non-isochronic branches. Assuming
that circuits follow the above routing scheme, delay faults
will result in slower, but correct circuits.

5. Datapath Design Issues

There are two main caveats with the proposed detection
techniques for data channels. One, a circuit is needed to de-
tect invalid tokens in a datapath. Two, not all processes will
produce an invalid token when they receive one. These is-
sues are addressed in this section.

5.1. Invalid Token Detector

Token generating failures will produce invalid tokens,
however, these invalid tokens need to be detected at some
point in the datapath and deadlock the system. Since invalid
tokens use an illegal encoding, both true and false rails are
high. This situation can be detected by the following pro-
duction rules:

¬reset �→ Ck↑
Lf ∧ Lt �→ Ck↓

whereLt and Lf are the two rails of a dual-rail code that (by
definition) has an illegal “11” state. The reset signal is used
to initialize the Ck check signal. As a final point, we can
use this signal to deadlock any handshake in the pipeline.
For example, Ck (and a complement generated using an in-
verter) can be used to block any of the C-elements shown
in Figure 6 by modifying their input signal as follows. In-
stead of using input signal s , the C-element should use ns
where ns is generated by the production rulesCk∧s �→ ns↑
and Ck ∧ ¬s �→ ns↓ (referred to as the ”switch” gate [9]).
Now when Ck↓ occurs, the next stage will be blocked per-
manently, thereby deadlocking the system.
This checker uses a timing assumption, but it is one that

is very liberal. It assumes that the delay through the next
pipeline stage and the C-element shown is larger than the
time it takes for the Ck signal to transition. Satisfying this
assumption is a trivial task in practice. A more interesting
property of this checker circuit is that it also identifieswhere
the fault occurs, and prevents it from propagating beyond
the next pipeline stage and corrupting the state of the rest of
the system.

5.2. Error Propagating Processes

An error in the output of one pipeline stage might be fil-
tered out by the next stage, depending on the computation
being performed. Sometimes errors will propagate through
a pipeline. A process that produces an invalid token out-
put when it receives an invalid token input is said to be er-
ror propagating. Consider the pull-down networks for the

Figure 8. The pull-down network for an adder
carry: (a) true rail, (b) false rail.

carry out of an adder in Figure 8. Results from invalid in-
puts into the carry function are shown in Table 6. For two
cases of invalid inputs, the carry circuit generated valid out-
puts. In this case, the outputs are correct since replacing the
invalid token with either valid token will yield the same re-
sult. Processes that are not always error propagating may

A B C Carry
T F T F T F T F
1 1 0 1 1 0 1 1
1 1 1 0 1 0 1 0
1 1 0 1 0 1 0 1
1 1 1 1 1 0 1 1
1 0 1 1 0 1 1 1

Table 6. Output tokens resulting from a carry
process with invalid input tokens.

prevent an invalid token from being detected and they must
be made self-checking by the method of invalid token de-
tection discussed in the previous subsection.

6. Experimental Results

Experimental results are obtained by applying our detec-
tion/isolation technique to two 64-bit 3-stage pipelines. The
first pipeline contains a 64-bit buffer and the second con-
tains a 64-bit AND-function unit, each of which receive in-
put from a bit generator and send output to a bit bucket.
Initially, each stage generates a single enable signal, there-
fore we partition each stage into smaller segments where
each segment has an enable signal. The detection/isolation
technique is applied to this set of pipelines and simulated
in HSPICE using TSMC 0.18 micron technology. The re-
sults are shown in Tables 7 and 8. We report the transistor
count, average power consumption, and period (total num-
ber of transitions per cycle) for the original pipelines and
the modified pipelines. The number of partitions is denoted
by N. The numbers that appear in parenthesis after the pe-
riod is the period we would obtain by performing bubble
reshuffling after adding the redundant C-elements.
The performance penalty of applying our detec-

tion/isolation method is fixed at 4 transitions per cycle (2



N T.-Count Avg. P.(mW) Period
Orig. Mod. Orig. Mod. Orig. Mod.

1 3324 N/A 6.03 N/A 16 N/A
2 3336 3384 7.56 6.41 16 20(18)
4 3296 3392 10.1 8.23 12 16
8 3328 3520 12.9 10.6 12 16
16 3264 3646 16.1 13.6 12 16(14)
32 3456 4224 20.1 18.7 12 16(14)
64 2116 4352 20.7 25.4 8 12

Table 7. Experimental results for a 64-bit
buffer.

when bubble reshuffling is possible). The number of ad-
ditional transistors required increases with the number of
partitions because each partition requires a dedicated redun-
dant C-element. Since we may freely choose the number
of partitions in this method, we can make a tradeoff be-
tween the additional hardware required and the desired pe-
riod. For example, we may choose a 64-bit AND-function
unit with 16 partitions and pay an increase in hard-
ware of 7%, but maintain the original period of 16 (the
original case being 1 partition).

N T.-Count Avg. P.(mW) Period
Orig. Mod. Orig. Mod. Orig. Mod.

1 5116 N/A 7.85 N/A 16 N/A
2 5132 5180 9.44 7.71 16 20
4 5104 5200 11.9 10.0 16 20(18)
8 5168 5360 14.9 13.7 16 20(18)
16 5056 5440 18.7 17.2 12 16
32 5312 6080 23.6 22.6 12 16
64 4864 6400 24.6 28.7 12 16(14)

Table 8. Experimental results for a 64-bit
AND-function unit.

7. Summary

We presented a detailed description of different faults
and their effect on asynchronous QDI circuits. These cir-
cuits, by their very nature, are highly tolerant of any de-
lay fault. Other faults such as stuck-at, stuck-open/closed,
bridging faults, and transient faults and their impact on
asynchronous circuits was presented first at the gate level,
and then the gate faults were translated to failure in com-
munication channels that occur at the interfaces of asyn-
chronous components. In particular, errors in terms of dead-
lock, synchronization failure, token generation and token
consumption were identified. Two modifications to con-
ventional QDI circuits were described that dealt with pure
synchronization channels and data channels respectively.
These modifications translated errors into circuit deadlock,

thereby making the errors visible and preventing them from
propagating far away from their origin. Layout techniques
to mitigate delay faults in some isochronic forks were also
presented. Finally, methods to translate invalid tokens into
deadlock along with detecting where the fault occurred
were also described.

References

[1] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic
Testing for Digital, Memory and Mixed-Signal VLSI Circuits.
Kluwer Academic Publishers, 2000.

[2] P. J. Hazewindus. Testing Delay-Insensitive Circuits. PhD
thesis, California Institute of Technology, Pasadena, Califor-
nia, 1996.

[3] H. Hulgaard, S. M. Burns, and G. Borriello. Testing asyn-
chronous circuits: a survey. Integr. VLSI J., 19(3):111–131,
1995.

[4] J. B. Khare and W. Maly. From Contamination To Defects,
Faults and Yield Loss. Kluwer Academic Publishers, 1996.

[5] P. K. Lala. Self-Checking and Fault-Tolerant Digital Design.
Morgan Kaufmann Publishers, 2001.

[6] A. M. Lines. Pipelined asynchronous circuits. Master’s the-
sis, California Institute of Technology, Pasadena, California,
1996.

[7] R. Manohar and A. J. Martin. Quasi-delay-insensitive cir-
cuits are Turing complete. In Proc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and
Systems. IEEE Computer Society Press, 1996.

[8] R. Manohar and A. J. Martin. Slack elasticity in concurrent
computing. In Proceedings of the Mathematics of Program
Construction, pages 272–285. Springer-Verlag, 1998.

[9] A. J. Martin. Compiling communicating processes into
delay-insensitive vlsi circuits. Distributed Computing,
1:226–234, 1986.

[10] A. J. Martin. The limitations to delay-insensitivity in asyn-
chronous circuits. Beauty is our business: a birthday salute
to Edsger W. Dijkstra, pages 302–311, 1990.

[11] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Pen-
zes, R. Southworth, and U. Cummings. The design of an
asynchronous mips r3000 microprocessor. In Proceedings of
the 17th Conference on Advanced Research in VLSI (ARVLSI
’97), page 164. IEEE Computer Society, 1997.

[12] Y. Massoud, S. Majors, J. Kawa, T. Bustami, D. MacMillen,
and J. White. Managing on-chip inductive effects. IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 10(6):789–797, 2002.

[13] V. I. Varshavsky. Circuits insensitive to delays in transistors
and wires. Technical report, Helsinki University of Technol-
ogy, November 1989.

[14] A. Yakovlev. Structural technique for fault-masking in asyn-
chronous interfaces. In IEE Proceedings E - Computers and
Digital Techniques, pages 81–91. IEEE Computer Society,
1993.


