
Slack Elasticity in Concurrent Computing

Rajit Manohar and Alain J� Martin

California Institute of Technology� Pasadena CA ������ USA

Abstract� We present conditions under which we can modify the slack
of a channel in a distributed computation without changing its behav�
ior� These results can be used to modify the degree of pipelining in an
asynchronous system� The generality of the result shows the wide variety
of pipelining alternatives presented to the designer of a concurrent sys�
tem� We give examples of program transformations which can be used
in the design of concurrent systems whose correctness depends on the
conditions presented�

� Introduction

In the design of an asynchronous clone of a MIPS R���� microprocessor� we
were faced with the problem of reasoning about a number of new program trans�
formations that were introduced for performance reasons� The majority of the
transformations corresponded to the introduction of pipelining in the proces�
sor ��	� In this paper� we provide general conditions under which we can pipeline
a distributed computation�

We specify a distributed computation using CHP� a variant of CSP �
	 �a brief
description is contained in the appendix�� and restrict our attention to systems
that do not share variables among concurrent processes� The processes in the
computation interact by exchanging messages over 
rst�in 
rst�out channels�
Each channel in the computation has a 
xed amount of slack� or bu�ering� which
speci
es the maximum number of outstanding messages on a channel�

The CHP speci
cation of a process completely characterizes both the com�
putation it performs as well as its synchronization behavior� For instance� we
can specify a process that performs addition with the following CHP�

�� �A�xkB�y�� C ��x � y� �

Unfortunately� for performance reasons� this speci
cation can be very restric�
tive in practice� If cX is the number of completed actions on channel X � the
speci
cation includes the property that
� � cA� cC � �

In other words� the speci
cation includes the fact that an implementation can�
not accept its next set of inputs on channel A without producing an output on
channel C � This restriction causes the throughput of an asynchronous delay�
insensitive circuit that implements the computation to degrade as �� logN �
where N is the number of bits used to represent x� However� it is possible that



this property of the speci
cation is not critical�namely� modifying it to the
weaker
� � cA� cC � logN

does not a�ect the correctness of the computation� In that case� we can pre�
vent the throughput degradation by pipelining the computation�a signi
cant
performance improvement�

It is often necessary to adjust the amount of pipelining in an asynchronous
computation to optimize its performance based on the timing behavior of com�
ponents of the system ��	� Ideally this should be a transformation applied after
the high�level design is completed� since we may not have the necessary timing
information until the physical design of the system has been simulated� Such
transformations� in general� involve examining the entire asynchronous system
instead of just a single process�

In this paper� we address the issues raised above by examining the following
question� when can we change the slack of communication channels that are part
of a system without modifying the behavior of the system� This single trans�
formation can be used to show the correctness �or lack thereof� of a number of
di�erent program transformation techniques� Changing the slack of a synchro�
nization channel is a non�trivial operation� Consider the following example in
which channels A� X � and Y are slack�zero channels�

X �A k A�Y k � X �� X �Y � �good� �� Y �� Y �X � �bad� �

The only possible computation is the sequence X �A�Y � �good�� However� if we
introduce slack on channel A� we now have the possibility A�Y �X � �bad��

When we are permitted to add slack to a channel in the system� we say that
the particular channel is slack elastic� If every channel in the system is slack
elastic� the system is said to be slack elastic�

� Model

We assume that the computation of interest is described by a collection of CHP
programs communicating via 
rst�in 
rst�out channels� The programs do not
share any variables� all interaction is via message�passing using single�sender
single�receiver channels� Let X be a command causing an �X�action� when exe�
cuted� We de
ne cX to be the number of completed X�actions since the beginning
of a computation�

��� Synchronization

�X �Y � form a pair of synchronization primitives if the di�erence jcX � cY j is
bounded ��	� Formally� there exist two integer constants kX and kY such that
at least one of the two constants is 
nite� and�
�kY � cX � cY � kX �safety requirement�

The quantity K � kX � kY is called the synchronization slack ��	�



The probe of a synchronization primitive can be used to determine if the
action can complete ��	� Formally�
X � �cX � cY � kX� � �cX � cY � kX�� �X

Y � ��kY � cX � cY � � ��kY � cX � cY �� �Y

where �E means that expression E becomes true eventually� Probes can only
occur in the guards of selection statements�

The value qX is de
ned as the number of X�actions currently suspended �
The progress requirement on synchronization primitives states that the set of
suspended actions is minimal� i�e�� the completion of any non�empty subset of
suspended actions would violate the safety requirement ��	� Formally� if �X�Y �
form a pair of synchronization primitives�
qX � � � qY � � �progress requirement�

CHP communication channels that carry data can be described using this
framework� A CHP channel C has two ports associated with it� a sender C�� and
a receiver C�� �C�� C�� form a pair of synchronization primitives� We de
ne sC�
to be the sequence of data values that have been sent on the sender port� and
sC� the sequence of received values� Let jsj be the length of sequence s� Then�
jsC�j � cC� and jsC�j � cC��

��� Computations and Behaviors

We restrict our attention to systems that satisfy the four properties listed below�
their need will become evident in the sections that follow�

� the system is closed� i�e�� we have speci
ed the CHP processes of interest
and their environment�

� the system is deadlock�free�
� negated probes of the sender port of channels are not used in the computa�

tion�
� if a sender port is probed� the probe will be true in
nitely often�

An execution trace is a particular interleaving of atomic actions that can
occur during execution of the system� The system is completely characterized
by the set of possible traces that can occur ��	� We only consider the complete
traces of the system ��	� The execution of processes is assumed to be weakly fair�
and the selection statement is assumed to be unfair� �The appendix contains a
more detailed description of the model��

Given a concurrent system� we are not interested in the possible interleavings
of actions that occur in a trace� Rather� we are interested in the sequence of
data values that are sent on certain channels of the system� given the sequence
of values being sent on other channels� For instance� in the example above� we
might only be interested in the fact that the data values sent on channel C
correspond to the sum of the values received on channels A and B � To this end�
we de
ne a behavior of a system in terms of the possible traces that can occur�

A behavior in our model is primarily characterized by the sequence of values
that are sent and received on the channels of the system� Since processes in the



system can only interact using communication channels� behaviors capture the
data values that are exchanged by interacting processes� Therefore behaviors
can be used to describe the input�output characteristics of processes in the
system� In addition� we would like to specify a computation without specifying
the synchronization behavior as far as possible� In our model� the only ordering
between values that have been sent on various channels that can be inferred from
the behavior itself is the ordering preserved by the FIFO nature of the individual
channels�

Since the sequences of values sent and received on channels can be in
nite�
behaviors capture the notion of weakly fair execution� The notion of weak fairness
in traces corresponds to enabled actions in a process being executed eventually�
the notion of weak fairness in behaviors corresponds to the next value �if any�
that can be sent�received on a channel being sent�received eventually�

The other component of a behavior is the sequence of non�deterministic
choices made by processes in the system� since these choices can a�ect the data
values being sent on channels� The only construct in CHP that introduces such
choices is the selection statement�

We assume that all the channels in the system are initialized empty� i�e��
for all channels c� kc� � �� The assignment of initial values to variables and
the initialization of channels is assumed to be part of the CHP program for
each process� Therefore� the actual initial values of variables do not a�ect the
behavior� because every variable is assigned a value initially �or the value the
variable has initially is not used��

Given the sequence of choices made by a process and the sequence of values
that have been received by the process� we can completely determine the local
state of a process� Therefore� our model does not include the local state of the
process as part of a behavior�

De�nition � �decision point�� Given a trace� a decision point for a process
p is a point between two actions in the trace where p has selected a guard of a
selection statement for execution and several guards of the selection are true�

A decision point is characterized by a tuple �n� sel� gset� alt�� where n is the
occurrence index of the selection statement in the execution of p� sel denotes the
selection statement� gset is the set of guards of the selection statement that are
true� and alt is the alternative chosen by p�

Decision points of the system correspond to places where a non�deterministic
choice is made� We assume we have no control over the mechanism used to
implement this choice� therefore� the choice made by the computation is assumed
to be unfair�

De�nition � �behavior�� Given a trace� the corresponding behavior B of a
system is a function that maps each channel c in the system to pairs of sequences
of values �sc�� sc�� that occurred in the trace� and processes to their set of decision
points in the trace�

Given a channel c and process p� we denote �sc�� sc�� by B�c� and the set
of decision points corresponding to p by B�p� The behavior corresponding to a



trace is unique� However� multiple traces can map onto the same behavior� since
di�erent interleavings of actions that do not interact will be reduced to the same
behavior if they do not a�ect the sequence of values sent on the channels in the
system�

De�nition 	 �system�� A system is a closed� deadlock�free collection of CHP
processes and is de�ned by the set of behaviors that can occur during execution�

Note that a system will be the empty set just when it does not contain any
processes�

Example �� The system

�� X �� � k �� Y �� � k �� Z �w �

k ���X �� X �x � Z �x � �Y �� Y �x �Z �x � 	Y �� skip�

�Y �� Y �y � Z �y � �X �� X �y �Z �y � 	X �� skip�
��

has an execution that corresponds to the sequence �X ��kX �x �� �Z ��kZ �w��
�Y ��kY �x �� �Z ��kZ �w� � � � where the 
rst guard X � ��� is chosen for execution
with Y being true in the outer selection statement� and Y � ��� is chosen in
the inner selection statement� The behavior corresponding to this trace maps Y
to the pair of in
nite sequences ���� �� � � �	� ��� �� � � �	�� X to ���� �� � � �	� ��� �� � � �	��
Z to ���� �� �� �� � � �	� ��� �� �� �� � � �	�� and the process with the selection statements
to the set f��� selout� fX�Y g� X�� ��� selout� fX�Y g� X�� � � �g� where selout is the
outer selection statement that selects between X and Y � and the labels X and
Y refer to the alternatives in the selection statement�

��	 Speci�cations and Observability

The speci
cation of a closed CHP program is a set of behaviors� Usually a
speci
cation does not completely specify the sequence of values sent and received
on all channels of the system� Accordingly� we classify the channels of the system
into internal and external channels� depending on whether or not the data values
sent on those channels are part of the speci
cation� All properties of interest
must be speci
ed only using the quantities sE� and sE�� where E is an external
channel�

Example �� It is possible that we may not be able to observe certain properties
of a computation� since behaviors do not contain as much information as the
sequence of actions in the computation� For example� consider the following two
processes�

�� NCS�� CS� �

k �� NCS�� CS� �

We cannot directly observe the property that two processes access their critical
sections CSi in an exclusive manner since we can only observe the sequence of
values on channels� However� we can make the mutual exclusion property visible
by the introduction of a third process and an external channel C as follows�



�� NCS�� A���A���CS� �

k �� NCS�� B �
�B �
�CS� �

k ���A �� A�x �� B �� B�x�� C �x �

By observing the sequence of values on channel C � we can determine if mutual
exclusion is maintained� For instance� if sequence �� 
� �� 
� � � � is possible� we have
violated the mutual exclusion requirement�

De�nition 
� Given two sets of decision points D� and D� for a process p� we
say that D� v D� i� for every decision point �n�� sel�� gset�� alt�� 
 D�� there
exists �n�� sel�� gset�� alt�� 
 D� such that n� � n�� sel� � sel�� gset� � gset��
and alt� � alt��

The relation �v� on sets of decision points orders them in terms of the
number of non�deterministic choices that were possible�

De�nition � �implementation�� We say that a system implements a speci��
cation if for each behavior Bsys of the system� there exists a behavior Bspec in the
speci�cation such that the sequence of values on all external channels in Bspec is
the same as in Bsys� and ��p �� Bsys�p v Bspec�p��

This implementation relation is di�erent from the traditional implementa�
tion relations used in trace theory and other models of concurrent programming
because it does not include the synchronization behavior of the computation�

Example 	� Consider the following two systems�

S� 
 �� X �� � k �� Y �� � k �� X �x � k �� Y �y �

S� 
 �� X ��� Y �� � k skip k �� X �x � k �� Y �y �

The computations speci
ed by S� and S� are indistinguishable under our model
because the sequence of values sent and received on channels X and Y remain
unchanged� and both systems have no decision points� Standard concurrency
models will di�erentiate them because the communication on X and Y cannot
be executed in parallel� and because of the additional bound � � cX � cY � �
in system S��

We now present the theorems that enable a large number of transformations�
including the introduction and elimination of pipelining� data��ow style process
decomposition� and pipelined completion detection�

� Main Theorems

Throughout this section we will use S to denote the set of possible behaviors of
the system of interest� p to denote a process in the system� and c to denote a
channel in the system�

Lemma � �monotonicity�� Let S� be the system obtained from S by increas�
ing the slack on a particular channel� Then S � S�



Proof
 Consider any behavior of S� This behavior corresponds to some execution
of system S� It su�ces to show that this execution is possible in S�� Let c
be the channel whose slack was increased from kc� to kc� � n� By de
nition�
computations from S satisfy cc��cc� � kc�� These computations still exist in S�

because we can postpone any attempted send action on c so that this condition is
satis
ed� since S is deadlock�free� We now show that the communication actions
that were attempted in S can also occur in S��

The only construct in CHP which can a�ect control �ow behavior is the
selection statement� Increasing slack does not change the probe of the receiver
end of the channel �by de
nition�� The probe of a sender is monotonic with slack
�by de
nition�� Since we disallow negated probes of sender ports� this implies that
all guards of selection statements are monotonic with slack� Also� a true probe
on a sender port can be postponed �since probes only become true eventually�
in S� until the point when it becomes true in S� Therefore� the guards true in
S will eventually become true in S�� and so any behavior from S could occur
in S�� ut

Lemma � shows that the set of behaviors is monotonic with the slack on the
channels� We now show that the only way in which increasing the slack on a
channel can a�ect the computation is by increasing non�determinism� Note that
both restrictions on computations that were mentioned in the previous section
are needed for this proof�

Theorem � �decreasing slack�� Decreasing the slack of a channel does not
a�ect the correctness of computations if and only if it does not introduce deadlock�

Proof
 Let S� be the system obtained from S by decreasing the slack of a chan�
nel� If S� is deadlock�free� S� � S by lemma �� By de
nition �� S� implements
S� ut

De�nition � �extension�� A behavior B� is said to be the extension of behavior
B i�


��c �� B�c � B��c��
��p� �� ��p � p �� p� � B�p � B��p� � B�p� �� B��p� � B�p� v B��p��

Intuitively� the extension of a behavior corresponds to the same data behav�
ior but with at least one additional choice which did not exist in the original
behavior�

Theorem � �increasing slack�� Let S� be the system obtained from S by
increasing the slack of a channel� Then either S � S�� or there exists a behavior
B� 
 �S� � S� that is the extension of a behavior in S�

Proof
 By lemma �� S � S�� Therefore either S � S�� or there exists B� 

S� � S� Assume such a B� exists� Now B� di�ers from every behavior in S in
either the sequence of values sent on some channel or in the set of decision points



for some process in S� This implies that the local state of some process from S�

di�ers from the the local state that could occur in S� Consider the 
rst point in
execution when this occurs� The only non�deterministic construct in CHP is the
selection statement� and therefore the only way a new local state could occur is
because of a new true guard in a selection statement� By the same argument as
in lemma �� the guards true in S will eventually become true in S�� Therefore�
we can pick an alternative of the selection statement that is possible in S� and
continue execution as in the original system S� This new behavior is the required
extension� ut

The strength of Theorem 
 lies in the fact that if we can show that we cannot
possibly introduce new decision points� this implies that adding slack does not
change the behavior of a computation�

We now present some corollaries of the results of the previous section that
can be used to reason about a large class of CHP programs�

� Subsidiary Results

The monotonicity lemma coupled with Theorem 
 permits us to make the fol�
lowing statement that is very useful in practice�

Corollary � �sandwich theorem�� If a system satis�es its speci�cation when
the slack on channel c is k and when the slack on channel c is l �� k�� it satis�es
its speci�cation when the slack on c is s� for all s satisfying k � s � l�

Proof
 The set of behaviors �and therefore the implementation relation� is mono�
tonic with slack� Therefore� if the system is correct with c having slack k and
slack l� the set of decision points is included on the set of those at slack l for all
slack s satisfying k � s � l� concluding the proof� ut

When computations are entirely deterministic� we can introduce slack on any
channel without a�ecting correctness�

Corollary � �deterministic computations�� If the guards in selection state�
ments are syntactically mutually exclusive and there are no probed channels� the
system has only one behavior�

Proof
 Since the computation is deterministic� the sequence of values sent on
channels is always the same and there are no decision points� ut

A selection statement with probed channels in its guards is said to exhibit
maximal non�determinism if all the guards can be true whenever the selection
statement is executed�

Corollary 	 �maximal non
determinism�� If all selection statements with
probes have maximal non�determinism� the system is slack elastic�



Proof
 The set of decision points of the system cannot be increased� so by The�
orem 
 we can increase the slack on any channel without changing the behavior
of the system� ut

Corollary � is extremely useful in practice� The design of the MIPS R���� pro�
cessor undertaken by our group satis
es its requirements�

Consider the problem of measuring the slack of a channel c� To be able to
measure the slack of c� we must be provided with a collection of processes to
which c is connected� and a single channel which produces one output on channel
result � true� if the slack of c is equal to a speci
ed value� say k� or false otherwise�
We claim that this task is impossible under the assumptions of the model�

Corollary 
 �impossibility of measuring slack�� It is not possible to mea�
sure the slack of a communication channel�

Proof
 Assume that a collection of deadlock�free processes can be used to answer
the question �is the slack of channel c equal to k�� Consider the closed system
S where we observe channel result � and where c has slack k� The only possible
output on result is true� by our assumption� Let S� be the system� where we
add slack � to channel c� By Theorem �� S implements S�� Therefore� result can
produce the value true in S��a contradiction� ut

More generally� if a system can be used to compute any relationship among the
slacks of a set of channels� then the relation must be trivial�i�e�� the system
always outputs true or always outputs false�

� Applications

When designing concurrent systems� we can increase the slack on a particular
channel under the conditions outlined above� We now present some important
transformations that can be shown to be semantics�preserving using the results
derived above�

��� Pipelining

Pipelining is a technique whereby the computation of a function is distributed
over a number of stages so as to reduce the cycle time of the system�increasing
the throughput�at the cost of increasing the latency of the computation� A
simple two�stage linear pipeline can be described by the following program�

�� L�x � I �f �x � � k �� I �y � R�g�y� �

We introduce pipelining when we transform program�

�� L�x � R�g�f �x �� �



into the program shown above� It should be clear that we can apply this trans�
formation if and only if we are permitted to increase the slack on channels L or
R� Under those conditions� we can formally pipeline a computation as follows�

��L�x �R�g�f �x ���

� f add slack � to channel R� introducing internal channel I g

��L�x � I �g�f �x ��� k ��I �y �R�y�

� f distribute computation�I is internal g

��L�x � I �f �x �� k ��I �t �R�g�t��

��� Eliminating Synchronization Among Actions

When designing a delay�insensitive system� we face a problem when attempting
to design datapaths where the quantities being manipulated are constituted of
a large number of bits� The problem is illustrated by examining the circuit
implementation of the following program�

�� L�x � R�x �

Before we send value x on channel R� we must be sure that all the bits used
to represent x have been received on channel L� The circuit that waits for all the
bits to have been received has a throughput that degrades as �� logN � where N
is the number of bits� As a result� as we increase the number of bits in x � the
system throughput will decrease�

Instead� we examine an alternative implementation strategy� We implement
channel L using an array of ��N� channels� where the individual channels use a

xed number of bits� As a result� we transform the program shown above into�

�� �ki �� L�i 	�x �i 	�� �ki �� R�i 	�x �i 	� �

We have moved the performance problem from the implementation of the
communication action on a channel to the implementation of the semicolon
that separates the L and R actions� However� we observe that there is no data�
dependency between channels L�i 	 and R�j 	 when i �� j � We will attempt to
remove the synchronization between the parts of the program that are not data�
dependent�

We introduce a dummy process that enforces the sequencing speci
ed by the
program above� The original program is equivalent to�

�ki �� �� S �i 	 � L�i 	�x �i 	� S �i 	 �R�i 	�x �i 	 ��
k �� �ki �� S �i 	� �

since the slack zero S �i 	�actions ensure that the actions on channels L and R are
properly sequenced� �The bullet operator ��� ensures that actions on S �i 	 and
L�i 	 �or R�i 	� are tightly synchronized��

Now� we increase the slack on channels S �i 	� If we let the slack on channels
S �i 	 go to in
nity� the program shown above is equivalent to�



�ki �� �� L�i 	�x �i 	� R�i 	�x �i 	 ��

Therefore� we can transform the original program into this one if and only if we
can add slack on channels S �i 	� Observe that we now have ��N� independent
processes� and increasing N will not a�ect the throughput of the system� This
transformation can be generalized to a technique which permits the distribution
of a control value in a loosely synchronized manner � 	�

��	 General Function Decomposition

In general� if we have a computation graph which is supposed to implement a
function that has a simple sequential speci
cation� we can show its correctness
by introducing �ghost channels� which sequence all the actions in the computa�
tion graph� A single process that sequences all the actions in the computation is
introduced� so that the resulting system mimics the behavior of the sequential
program� Adding slack to the ghost channels introduced for sequencing permits
the processes in the computation graph to proceed in parallel� when we add
in
nite slack to the sequencing channels� we have a computation that behaves
exactly like the original computation without the sequencer process� and the
ghost channels can be deleted without modifying the behavior of the compu�
tation� Therefore� showing the correctness of the original computation can be
reduced to showing whether adding slack on the ghost channels modi
es the
behavior of the system�

Example 
� Suppose we would like to demonstrate that the following CHP pro�
gram implements a 
rst�in 
rst�out bu�er�

�� L�x � U �x � L�x � D �x � k �� U �y � R�y � D�y � R�y �

We begin by closing the system with the introduction of two processes which
send data on channel L and receive data from channel R� Next� we introduce a
sequencer process which sequences the actions in the computation� The resulting
system is shown below�

i �� �� �� L�i � i �� i � � � k �� R�w �

k �� L�x � S�� U �x � S�� L�x � S�� D �x � S� �

k �� U �y � R�y � S�� D�y � R�y � S� �

k �� S�� S�� S�� S�� S�� S� �

The sequencer process restricts the computation so that only one interleaving is
possible� namely the sequence

�L��kL�x �� �U �xkU �y�� �R�ykR�w�� �L��kL�x �� �D �xkD�y�� �R�ykR�w��
�L�
kL�x �� ���

which clearly implements a 
rst�in 
rst�out bu�er� since the sequence of values
sent on R is the same as the sequence of values received on L� We can increase the
slack on channels Si without modifying its behavior because the computation
is deterministic� In the limit of in
nite slack on the channels Si for all i� the



sequencer process does not enforce any synchronization between the actions�
and we can eliminate the sequencer process entirely leaving us with the original
computation� Therefore� the original computation implements a 
rst�in 
rst�out
bu�er�

��
 A Recipe for Slack Elastic Programs

Corollary � can be used as a guideline for the design of programs that are
guaranteed to be slack elastic� Ensuring slack elasticity of the design is important
in order to be able to postpone decisions related to the amount of pipelining to
be used in an implementation� In the design of an asynchronous MIPS processor�
we found it necessary to adjust the slack on communication channels after most
of the physical layout was complete because we did not have accurate estimates
of the timing behavior of the processes we used until analog simulations were
performed�

There are two selection statements in CHP� Selection statements that are
described using the thick bar ���� indicate that the guards are mutually exclusive�
If such selection statements do not use any probes in their guards� they cannot
be the cause of the introduction of new decision points� Selection statements
that use the thin bar ��� indicate that their guards might not be mutually
exclusive� If such selection statements are maximally non�deterministic�i�e�� if
the computation meets its speci
cation irrespective of the alternative chosen
when the selection is encountered� then they will not be the cause of erroneous
computations� If we follow these two guidelines� we will be guaranteed that the
computation is slack elastic� Every process in the high�level description of the
asynchronous MIPS processor we designed satis
ed these criteria�

� Conclusion

We have presented a new technique for reasoning about the correctness of a
concurrent system based on the concept of synchronization slack� and presented
conditions under which the slack of a channel in a distributed computation can
be modi
ed without a�ecting its behavior�

We showed how a number of program transformations can be analyzed by
considering the e�ect of changing the slack of a communication channel� demon�
strating that slack elasticity is an important property for a computation to have�

We presented su�cient conditions under which a distributed computation is
slack elastic� The conditions were strong enough to be satis
ed by the complete
high�level design of an asynchronous processor� Slack elasticity was an important
tool that enabled us to reason about a number of complex transformations in
the design of the processor�

References

�� van der Goot� M�	 The Semantics of VLSI Synthesis� Ph�D� thesis� California Insti�
tute of Technology 
�����



�� Hoare� C�A�R�	 Communicating Sequential Processes� Communications of the ACM�
��

� 
���
� �������

�� van Horn� K�S�	 An Approach to Concurrent Semantics Using Complete Traces�
M�S� thesis� California Institute of Technology 
��
��

�� Martin� A�J�	 An Axiomatic de�nition of synchronization primitives� Acta Informat�

ica� �� 
��
�� �������

�� Martin� A�J�	 The Probe	 An addition to communication primitives� Information

Processing Letters� �� 
��
�� �������

�� Martin� A�J�� Lines A�� Manohar R�� Nystr�om� M�� Penzes� P�� Southworth� R��
Cummings� U�V�� and Lee� T�K�	 The design of an asynchronous MIPS R�����
Proceedings of the ��th Conference on Advanced Research in VLSI 
�����

�� Manohar� R�	 The Impact of Asynchrony on Computer Architecture� Ph�D� thesis�
California Institute of Technology 
���
�


� van de Snepscheut� J�L�A�	 Trace theory and VLSI design� Lecture Notes in Com�
puter Science ���� Springer�Verlag 
��
��

�� Williams� T�E�	 Self�timed Rings and their Application to Division� Ph�D� thesis�
Computer Systems Laboratory� Stanford University 
�����

A Notation

The notation we use is based on Hoare!s CSP �
	� What follows is a short and
informal description of the notation we use� A formal semantics can be found
in ��	�

Simple statements and expressions�

� Skip� skip� This statement does nothing�
� Assignment� x �� E � This statement means �assign the value of E to x ��
� Communication� X �e means send the value of e over channel X � Y �x means

receive a value over channel Y and store it in variable x � When we are not
communicating data values over a channel� the directionality of the channel
is unimportant� In this case� the statement X denotes a synchronization
action on port X �

� Probe� The boolean X is true if and only if a communication over port X
can complete without suspending�

Compound statements�

� Selection� �G� � S� �� ��� �� Gn � Sn�� where Gi !s are boolean expressions
�guards� and Si !s are program parts� The execution of this command cor�
responds to waiting until one of the guards is true� and then executing one
of the statements with a true guard� The notation �G� is short�hand for
�G � skip�� and denotes waiting for the predicate G to become true� If
the guards are not mutually exclusive� we use the vertical bar ��� instead of
�����



� Repetition� ��G� � S� �� ��� �� Gn � Sn�� The execution of this command
corresponds to choosing one of the true guards and executing the correspond�
ing statement� repeating this until all guards evaluate to false� The notation
��S� is short�hand for ��true� S�� If the guards are not mutually exclu�
sive� we use the vertical bar ��� instead of �����

� Sequential Composition� S �T � The semicolon binds tighter than the parallel
composition operator k� but weaker than the comma or bullet�

� Parallel Composition� S k T or S �T � The k operator binds weaker than the
bullet or semicolon� The comma binds tighter than the semicolon but weaker
than the bullet�

� Simultaneous Composition� S �T �read �S bullet T�� means that the actions
S and T complete simultaneously� The bullet synchronizes the two actions
by enforcing cS � cT � Action S �T is implemented by decomposing actions
S and T into smaller actions and interleaving them� The operator binds
tighter than the semicolon and parallel composition�

The concurrent execution of a collection of CHP processes is assumed to be
weakly fair�every continuously enabled action will be given a chance to execute
eventually� The selection statement is assumed to be demonic� and it therefore
not fair� Consider the following four processes�

�� X �� � k �� Y �� �

k ���X �� X �x �� Y �� Y �x �� Z �x �

k �� W �
 �

Since the selection statement is not fair� Z is permitted to output an in
nite
sequence of zeros� However� both Z �x and W �
 will execute eventually� since
parallel composition is assumed to be weakly fair�


