
RVM�� ��

Quasi�delay�insensitive circuits are Turing�completey

Rajit Manohar and Alain J� Martin

Department of Computer Science
California Institute of Technology

Pasadena� CA ����	�

November �
� ���	

Abstract� Quasi�delay�insensitive �QDI� circuits are those whose correct oper�
ation does not depend on the delays of operators or wires� except for certain wires
that form isochronic forks� In this paper we show that quasi�delay�insensitivity�
stability and non�interference� and strong con�uence are equivalent properties of a
computation� In particular� this shows that QDI computations are deterministic�
We show that the class of Turing�computable functions have QDI implementations
by constructing a QDI Turing machine�

Keywords� Quasi�delay�insensitive circuits� Turing machines� Determinism� Con�
�uence� Stability

�� Introduction

There has been a renewal of interest in the design of asynchronous circuits� motivated by the potential

benets of designing circuits in an asynchronous fashion� Asynchronous circuits exhibit average case behavior

and can therefore be optimized in a data�dependent fashion� Another benet is that the portion of the circuit

involved in the computation is the only part that dissipates power� As a result� asynchronous design methods

are relevant for applications where low power consumption is important�

Various models of CMOS circuits are used to hide the electrical properties of transistors� which would

otherwise complicate the design process� These models typically assume that voltages represent boolean

values� and that a transistor can be thought of as a switch� Delay�insensitive circuit design assumes that

the correct operation of a circuit is independent of the delay in operators and wires� It was shown in ���

that the class of circuits that are entirely delay�insensitive is quite limited� Speed�independent circuit design

assumes that operators can take an arbitrary amount of time to switch� but that wires have negligible delays

compared to operators� Self�timed circuits assume that wires have negligible delay compared to gates in

local isochronic regions ���� Quasi�delay�insensitive circuit design assumes that both operators and wires can

take an arbitrary time to switch� except for certain wires that form isochronic forks ����

In this paper we show that the class of QDI circuits is Turing complete �modulo nite memory�� i�e��

any recursive function can be computed with QDI circuits� We show that state transitions in QDI circuits

must exhibit the diamond property and� as a consequence� all QDI computations are entirely deterministic�

In particular� this implies that one cannot build a QDI arbiter�

Strong con�uence is closely related to the property of semi�modularity �	�� However� �	� only considers

semi�modularity in the context of sequential machines� In addition� the computations considered are not

semi�modular at every state� but only at some states� In �
�� it is shown that hazard�free speed�independent

asynchronous circuits are deterministic� but under a di�erent gate model� In particular only AND� OR�

NOT gates and C�elements are considered� In addition� gates that cannot be directly realized in CMOS are

permitted in their model� since they allow gates with inverted inputs�

This paper is organized as follows� We introduce our circuit model and explain what a QDI circuit is in

y The research described in this report was sponsored by the Advanced Research Projects Agency and monitored by the O�ce of

Army Research�

RVM�� ��

terms of this model� We then prove necessary and su�cient conditions for a circuit to be QDI� and discuss

various consequences of this� We give the construction of a QDI Turing machine with a semi�innite tape

as a concrete demonstration of the Turing�completeness of this class of circuits�

�� Circuit model

A CMOS circuit is a network of gates� where each gate can have an arbitrary number of inputs and one

output� We assume that all circuits are closed� each variable of the circuit is the input of a gate and the

output of a gate� An open circuit can be transformed into a closed one by representing the environment of

the circuit as gates�

The output of a gate is connected to the low voltage level �used to represent the boolean false� via a

transistor network �known as the pull�down�� and to the high voltage level �used to represent the boolean

true� via another transistor network �known as the pull�up�� These two transistor networks together form

the gate� as shown in Fig� ��

High voltage level

Low voltage level

pull-down network

gate output

pull-up network

Fig� �� Gate model�

A transistor is modelled as a switch that establishes or cuts electrical connections between nodes�

depending on the voltage of the gate of the transistor� A pull�up�pull�down network is modelled as a

network of switches that determine if two nodes are connected or disconnected� This network is represented

as a boolean function which is true just when the two nodes of interest are connected�

Since the pull�up and pull�down networks are modelled as boolean functions� a gate can be represented

by a pair of boolean functions� Such a representation can be expressed using production rules ����

De�nition� �production rule� ���

A production rule �PR� is a construct of the form G �� t � where t is a simple assignment �a transition��

and G is a boolean expression known as the guard of the PR�

A gate with output x � pull�up network B�� and pull�down network B� corresponds to the production rules

B� �� x�

B� �� x�

x� and x� are abbreviations for the assignments x �� true and x �� false respectively� We use the

predicate R on transitions to denote the result of a transition� R�x���x and R�x����x � For example� a

Muller C�element with inputs a and b and output c would be represented by production rules

a � b �� c�

�a � �b �� c�

De�nition� �production rule set� ���

A production rule set is the concurrent composition of all the production rules in the set�

RVM�� ��

A production rule set is used to describe a network of gates�

De�nition� �execution� ���

An execution of a production rule G �� t is an unbounded sequence of �rings� A �ring of G �� t when

G is true amounts to the execution of t � and a �ring with G false amounts to a skip� The �ring of a

production rule in a state where G � �R�t� holds is said to be e�ective� otherwise� the �ring is said to be

vacuous� The execution of a production rule set corresponds to the weakly fair concurrent composition of

the individual production rules in the set�

Although one could assume that the transitions on wires are instantaneous� a CMOS circuit does not

have this property� We make the weaker assumption that transitions on wires are monotonic� Since we make

this assumption� we insist that no production rule is self	invalidating�

De�nition� �self	invalidating production rule� ���

A production rule G �� t is said to be self	invalidating when R�t�	�G �

A self�invalidating production rule corresponds to a gate whose output transition disabled itself�

If the output of a gate is at the low voltage level� it can change to the high voltage level when the

pull�up network becomes conducting� This can happen as a result of the environment changing some input

to the gate� If the input of the gate can change in a manner that makes the pull�up network non�conducting

before the output of the gate changes� the circuit is said to exhibit a hazard since the circuit could have a

glitch on the output of the gate�

De�nition� �non	interference� �	�

The production rules B� �� x� and B� �� x� are said to be non	interfering in a computation if and

only if �B�
 �B� is an invariant of the computation� A production rule set is non	interfering if every

production rule in the set is non	interfering�

Let B� �� x� and B� �� x� be a pair of production rules that dene the gate for x � If B��B� were true at

any point in the computation� the result at the circuit level would correspond to connecting the high voltage

level to the low voltage level�a short circuit� Non�interference guarantees that such a short�circuit cannot

occur� �Note that a CMOS circuit implementation will have short�circuit currents when a gate switches�

however� these currents are transient��

�� Quasi�delay�insensitive circuits

A circuit is said to be quasi�delay�insensitive if its correct operation is independent of the delays of gates

and wires� except for certain wires that form isochronic forks�

���� Isochronic forks and inverters

A fork in a circuit corresponds to an output of a gate being used as the input for more than one gate�

As an example� consider the fork in Fig� �� The fork connects output x of gate G to the input x� of gate

G� and the input x� of gate G��

x1

G

G1

G2

y

z

x2

x

Fig� �� An example of a fork�

RVM�� ��

The fork being isochronic means that some transitions on x are not acknowledged by a transition of

both y and z�the outputs of gates G� and G� respectively�

For instance� transition x� causes transitions x�� and x��� Transition x�� causes �is acknowledged by�

transition y�� But transition x�� does not cause a transition on z � Hence� the completion of transition x��

has to be justied by timing assumptions� We assume that� when transition x�� has been acknowledged by

transition y�� transition x�� is also completed� This assumption is called the �isochronicity assumption��

����

A transition on a variable� say x � can complete in two ways� the voltage of x reaches a value that causes

the gate of which x is an input to switch �i�e� a transition on the output takes place�� the voltage of x reaches

a value that prevents the gate of which x is an input from switching�

In both cases� the voltage value for which the transition is considered completed depends on the structure

of the gate�transistor and switching thresholds� in particular� We can abstract from specic physical

dependencies by modelling the time behavior of the transition as a hypothetical �wire delay�� It is this

abstraction that allows us to say that forks are isochronic when the propagation delays on all branches of

the fork are identical�hence the term �isochronic��

If all forks are isochronic� it is possible to lump the delays of all output branches of a gate into the

delay of the gate and assume that all wires delays are zero� Therefore speed�independence is equivalent to

assuming that all forks are isochronic� and thus fullling the isochronicity requirement is the most practical

way of implementing speed�independence�

Fullling the isochronicity requirement is considered straightforward� except when there is an explicit

inverter on the branch of the fork whose transition is not acknowledged� This means that there is an

additional delay�namely� the time taken for an inverter to switch�added to the delay of the wire� Since

we have already assumed that gates can take an arbitrary amount of time to switch� this implies that we

can no longer meet the isochronicity requirement without making an additional timing assumption on gate

delays�an assumption that we do not choose to make�

Therefore� the only gates we permit are those that do not need explicit inverters for their implementation�

Such gates are said to be directly implementable� A production�rule representation of a gate B� �� x� and

B� �� x� corresponds to a directly implementable gate if and only if the negation�normal form of B�

contains only inverted literals� and the negation normal form of B� contains only noninverted literals�

This is a consequence of using only P�transistors for pull�up networks and only N�transistors for pull�down

networks�

The introduction of inverters to generate inverted versions of certain variables may result in a circuit

that is no longer QDI� The process of determining where inverters should be placed and adjusting the senses

of various signals to make a production�rule set directly implementable is known as bubble reshu
ing� For

instance� an AND gate with inputs a and b� and output c is described by the production rule set

a � b �� c�

�a
 �b �� c�
To make this production rule set directly implementable� we can invert the sense of c� The negated version

of c is written as c � We obtain

�a
 �b �� c �

a � b �� c �

We can now add an inverter on the output to obtain c from c � This transformation does not a�ect the QDI

property of the circuit because the rest of the circuit can never examine c � This observation is general� one

can invert the sense of the output of a gate and add an inverter after it without a�ecting the QDI property

of the circuit that uses the gate�

RVM�� �	

Suppose� instead� we decided to implement the AND gate by inverting the inputs to obtain

�a � �b �� c�

a
 b �� c�

If the uninverted senses of a and b are used in other parts of the circuit and the fork between this AND gate

and the rest of the circuit is isochronic� then the introduction of inverters to generate a and b can result

in a circuit that is no longer QDI�

There are tools that automatically determine where inverters can be placed so that the resulting pro�

duction rule set is directly implementable ����

���� Circuit malfunction

We assume that the only way a QDI circuit can malfunction is if the output of any gate in the circuit

glitches� If all gates are hazard�free� then we consider the circuit to be QDI� �An error in the design of a

circuit may produce a QDI circuit that implements a di�erent specication��

De�nition� �stability� ���

A production rule G �� t is said to be stable in a computation if and only if G can change from true to

false only in those states of the computation in which R�t� holds� A production rule set is said to be stable

if and only if every production rule in the set is stable�

Note that stability is not guaranteed by the implementation of a single gate� but is a property of the entire

computation� Martin�s synthesis method compiles CSP programs into production rules� The synthesis

procedure guarantees that the resulting production rule set is stable and non�interfering�

Theorem� �quasi	delay	insensitivity� �
�

A circuit is QDI if and only if the production rule set describing it is stable and non	interfering�

Proof� Suppose the production rule set is unstable� Then� there exists a gate represented by the production

rules B� �� z� and B� �� z� with an unstable production rule� Without loss of generality� there is a state

in which �z �B� holds� which is followed by a state in which �z � �B� holds before z changes� Therefore�

the output of the gate can glitch� which implies that the circuit is not QDI� If the production rule set is

non�interfering� there can be a short�circuit�

Suppose the production rule set is stable and non�interfering� Consider a gate B� �� z� and B� �� z��

From stability� we know that if �z � B� holds� then B� remains true until z changes� In other words� we

cannot have a state in which �z��B� holds before z changes� Similarly� the transition z� is also hazard�free�

implying that the gate is hazard�free� Since every gate is hazard�free� the circuit is QDI� �

�� Con�uence� Determinism� and Arbiters

In this section we examine some of the consequences of stability and non�interference� the two properties

that characterize QDI computations� The following denition can be found in ����

De�nition� �strong con�uence� ���

Let t� and t� be two transitions that can �re in state s � Let s� be the state obtained by �ring t� in s �

and s� be the state obtained by �ring t� in s � The computation is said to be strongly con�uent� if t� can �re

in state s� and t� can �re in state s�� and both alternatives lead to the same �nal state� �cf� Fig� ��

Theorem� �strong con�uence� ���

A computation can be described by a stable� non	interfering production rule set if and only if it is

strongly con�uent�

RVM�� ��

Proof� Let G� �� t� and G� �� t� be two production rules that have e�ective rings in state s � i�e��

s	G� � G� � �R�t�� � �R�t��� Now� t� cannot make G� false� since that would make the production rule

unstable� Therefore� after t� res� G� �� t� can still re� Similarly� G� �� t� can re after t� changes as well�

Since all transitions are elementary assignments� the nal state does not depend on the order of the two

rings� Therefore� the computation is strongly con�uent�

Conversely� suppose a computation is strongly con�uent� For each transition t � dene G�t� as the

disjunction of all the states in which the transition has an e�ective ring� Then we claim that the production

rule set fG�t� �� t � t is a transitiong is a stable� non�interfering production rule set that describes the

computation� Let G�t� �� t be a production rule that has an e�ective ring in some state s � Firing any

other production rule cannot disable t � since that would violate strong con�uence� This implies that the rule

G�t� �� t is stable� Since G�t� �� t is an arbitrary production rule� the production rule set is stable� The

production rule set is non�interfering since both x� and x� cannot have an e�ective ring in a state s � which

implies that G�x�� � G�x�� � false� Finally� the production rule set correctly describes the computation

since� by construction� a transition is enabled in the production rule set if and only if the transition had an

e�ective ring in the original computation� �

Theorem ��� does not directly rule out self�invalidating production rules� However� these rules can be

systematically eliminated by the introduction of new variables� Let one of B� �� x� and B� �� x� be a

self�invalidating rule� We can replace these rules with the following �y is fresh��

B� �� y�

B� �� y�

y �� x�

�y �� x�

These rules are no longer self�invalidating since y is a fresh variable� They also do not change the result of

the computation� Therefore� ruling out self�invalidating rules does not restrict the computation in any way�

�The rules y �� x� and �y �� x� are implemented with two inverters��

Consider any strongly con�uent computation� Suppose we identify all the e�ective rings that can

take place at a particular point in the execution and articially prevent any other production rule from

ring� Then� no matter which path was taken by the computation� the nal result would be the same� This

observation holds at any point in the computation� We conclude that a strongly con�uent computation is

essentially deterministic� Therefore� a QDI computation will always be deterministic�

S’

T2 T1

S1 S2S1 S2

T1 T2

S

Fig� �� Strongly con�uent computation�

An arbiter with inputs ai and bi � and outputs u and v is described by the handshaking expansion

���ai �� u�� ��ai�� u�

�bi �� v�� ��bi�� v�

��

where the thin bar for the selection denotes arbitration� There is no QDI implementation of this circuit

because a computation that uses an arbiter cannot be strongly con�uent� In the state in which ai � bi holds�

both u� and v� can re� However� after u� res� v� can no longer re� This implies that when designing an

arbiter� we have to consider the electrical behavior of transistor circuits�

RVM�� �

	� Compilation of a Turing machine

In this section we demonstrate that QDI circuits can be used to compute any computable function by

constructing a QDI bounded�tape Turing machine� Since any computation can only use a nite amount of

memory �since any physical implementation of a computation can only use nite resources�� this demonstrates

that restricting the design space to QDI circuits does not limit the class of functions that can be computed�

The implementation we propose does not include any inverters on a single branch of a fork� and therefore

doesn�t contain inverters on the branch of an isochronic fork� Hence� the implementation is QDI �and

therefore� also speed�independent��

Let TM � hS �K � �i be a Turing machine with a semi�innite tape where S and K are positive integers�

and � is a function

�� fq�� � � � � qSg � f��� � � � � �K g � fq�� � � � � qSg � f��� � � � � �K �L�Rg

satisfying ��q�� �k � � �q�� �k � for all k � Using s to denote the state� array a to denote the tape� and p to

denote the head position� a CSP program that describes such a Turing machine is�

TM � s �� q�� p �� ��

�� �s � d� �� ��s � a�p���

� d � L �� p �� p � � �� d � R �� p �� p � �� else �� a�p� �� d �

�

The Turing machine is initialized in state zero with its head located at position zero on the tape� It uses

�� commonly referred to as the next move function to determine the action it should take� It then updates

the tape appropriately� and continues the computation� In the rest of this section� we omit the assignments

s �� q� and p �� �� since they can be performed by appropriately initializing the circuit on reset�

���� Process Decomposition

The computation of the Turing machine proceeds in two steps� Using the current value on the tape

and the current value of the state� the next state and action is computed� Following this� the tape is

appropriately updated� We therefore decompose the Turing machine into two parts� one for each distinct

step of the computation� Using variable c to denote the current value of the symbol on the tape� we obtain�

TM � � �� Tout!c� �s � d� �� ��s � c�� Tin�d �

TM � � �� Tout �a�p�� Tin!d �

� d � L �� p �� p � � �� d � R �� p �� p � �� else �� a�p� �� d �

�

TM � TM � k TM �

The computation �s � d� �� ��s � c� reads and writes the same variable s � Since we cannot perform this

operation without making a temporary copy of s � we make this copy explicit by introducing a state bu�er�

Using �X !� as an abbreviation for the value received on X � we obtain�

next � �� �s � d� �� ��Sout!�Tout!�� Sin�s �Tin�d �

statebuf � �� Sout �x �Sin!x �

TM � � next k statebuf

We do not decompose TM � furthur� since both next and statebuf can easily be transformed into a circuit

�see below�� For the remainder of this section� we concentrate on TM ��

RVM�� ��

A computation resembles a function block when it is of the form �read inputs�� followed by �produce

outputs�� This computation has a standard QDI implementation ���� We make TM � resemble this form by

introducing a tape bu�er process�

fulltape � �� Tin!d �

� d � L �� p �� p � � �� d � R �� p �� p � �� else �� a�p� �� d �� TTout �a�p�

�

tapebuf � �� Tout �x �TTout!x �

TM � � fulltape k tapebuf

On receiving an input on Tin� fulltape updates its current state by either changing the value of p or

changing the value of a�p�� Finally� the value of a�p� is read� Since reading a�p� and modifying p and a�p�

happen in sequence� we can implement this sequencing once and write fulltape as a reactive process� We

split the tape into the tape control� which sequences the read and update operations� and the tape itself�

tapecontrol � �� LTin��Tin!��TTout ��L!� �

tape � ���LTin �� LTin!d � �d � L �� p �� p � � �� d � R �� p �� p � �� else �� a�p� �� d�

��L �� L�a�p�

��

fulltape � tapecontrol k tape

To implement tape� we consider the tape to be the concurrent composition of a linear array of tape

elements as shown in Fig� �� Each tape element maintains information about its position relative to the tape

head� Its current state s is l if the element is to the left of the head position� r if the element is to the right

of the head position� and t otherwise� At any point� the tape state �from left to right� can be described by

the regular expression l�tr�� where the length of the expression is the size of the tape� �The presence of a

leading �l� is guaranteed by the program of a Turing machine with a semi�innite tape��

tape
element

RTin

RTout

RL

LTin

LTout rest of tape

Fig� �� Decomposition of tape into an array of tape elements�

Each tape element contains a register that stores the symbol in the tape element� Apart from this

register� each tape element must maintain its state� s � The operation of a tape element �given its current

state� can be described as follows�

s � l� If a �move left� action is to be performed� it is communicated to the rest of the tape� The new state

is the state of the rst process in the rest of the tape� If a write� read� or a �move right� action is

performed� this action is communicated to the rest of the tape� and the state remains unchanged�

s � r� A �move left�� read� and write action can never happen� If a �move right� action occurs� the new

state is t�

s � t� A �move left� action results in state r� A �move right� action results in state l� and this action is

communicated to the rest of the tape so as to move the head to the right� A read�write action is

sent to the register�

Since the next state of a tape element can depend on the state of the rst element in the rest of the tape�

we introduce channels RTin and LTout that communicate this information�

Once again� since the tape reads and modies its own state� we introduce a bu�er to make the copy

explicit� The CSP description of the tape element is�

RVM�� ��

tapeelem � ���LTin �� LTin!d �STin!s �

�d � L �� �s � l �� RTout �d �RTin!s �LTout �l

��s � t �� LTout �t� s �� r

�

��d � R �� �s � l �� RTout �d �RTin!�LTout �s

��s � t �� RTout �d �RTin!�LTout �s � s �� l

��s � r �� LTout �s � s �� t

�

��else �� �s � l �� RTout �d �RTin!�LTout �s

��s � t �� GW �d �LTout �s

�

�� STout �s

��L �� �s � l �� L��R!�

��s � t �� L��GR!�

�

��

tapereg � ���GR �� GR�x

��GW �� GW !x

��

tapestate � ��STin�x �STout!x�

tapeelement � tapeelem k tapereg k tapestate

tapeelem

tapereg

tapestate

RTout

R

RTin

GR GW

STin STout

LTin

LTout

L

Fig� 	� Decomposition of a tape element�

Since we need an additional channel LTout to perform correct state updates� we modify tapecontrol to the

following process�

tapecontrol � �� LTin��Tin!��TTout ��L!��LTout! �

The complete tape element decomposition is shown in Fig� 	�

In the following sections� we compile the Turing machine into production rules� The compilation will pro�

ceed by translating each CSP process into handshaking expansions and� nally� into directly implementable

production rules�

RVM�� ���

���� Compilation of TM	

The handshaking expansion for TM � is straightforward� We use the output on Sin and Tin as the

acknowledge for Sout and Tout � and the input on Sout and Tout as the request for data on Sin and Tin�

We have�

next � ���v�Sout� � v�Tout���Sin�Tin� �n�Sout� � n�Tout���Sin��Tin��

statebuf � ��Sout �� a� �v�Sin��� a �� Sin�Sout�� �n�Sin���

where the functions v and n encode the validity and neutrality test respectively� We provide the production

rules corresponding to a one�bit version of statebuf � This construction can be easily generalized to n�bits�

statebuf �bit � �� ��Sint � �Sinf �� �at �� Soutt� �� af �� Soutf ���

�Sint �� af �� at� �� Sinf �� at�� af ��� Soutt��Soutf � �

The production rules are�

�Sint � �Sinf � �af �� Soutt�

�Sint � �Sinf � �at �� Soutf �

�Sint � at�
 �Sinf � af � �� Soutt�

�Sint � at�
 �Sinf � af � �� Soutf �

at
 Sint �� af �

�Sinf � �af �� at�

af
 Sinf �� at�

�Sint � �at �� af �

Notice that the compilation of this bu�er completes the compilation of tapebuf � and part of tapeelement

as well� The rest of TM � can be compiled using the standard function block compilation technique ���� and

depends on the next move function �� The block diagram of TM � is shown in Fig� ��

Sout Sin

TinTout

statebuf

next

Fig� �� Compilation of TM	�

���� Compilation of the tape

To simplify the handshaking expansion for the tape� we use the input on LTin as a request for data on

LTout � and the output on LTout as the acknowledge for channel LTin� The protocol used on L is the usual

four�phase handshake�

Compiling tapecontrol� The handshaking expansion for tapecontrol is given by�

���v�Tin���LTin �� Tin� �v�LTout���LTin�� �n�LTout���

Lo�� �v�Li���TTout �� Li � �n�Tin���Lo�� �n�Li���TTout��

We use process factorization to split the handshaking expansion into the following two concurrent processes�

���v�Tin���LTin �� Tin� �v�LTout���LTin�� �n�LTout���Lo�� �n�Tin���Lo��

k

���v�Li���TTout �� Li � �n�Li���TTout��

The second process can be translated into a number of wires� We compile the rst process for one�bit data�

This construction can be easily generalized for n�bits of data� We introduce a state variables st and sf to

remove indistinguishable states� �We could have just used one variable� but the resulting production rule

RVM�� ���

set would need a number of extra inverters to make it directly implementable�� The resulting handshaking

expansion is�

���Tint �� LTint� �� Tinf �� LTinf ��� �LToutt
 LToutf �� sf �� st��LTint��LTinf ��

��LToutt � �LToutf ��Lo�� st�� sf �� ��Tint � �Tinf ��Lo��

The production rules corresponding to this handshaking expansion are�

�Tint � �st � �Lo �� LTint�

�Tinf � �st � �Lo �� LTinf �

st �� LTint�

st �� LTinf �

�sf � �Lo �� st�

Lo �� st�

LToutt
 LToutf �� sf �

�LToutt � �LToutf � �st �� sf �

�LToutt � �LToutf � �sf �� Lo�

Tint � Tinf � sf �� Lo�

Notice that we have used the inverted sense of Tin �Tin � in this production rule set� We have to use an

inverter to generate this signal from Tin�

Compiling a register� Compilation of the register used in tapelement is very simple� We compile a one�bit

dual�railed register� the construction can be easily extended to n�bits� The handshaking expansion for the

register is�

���GRi � xt �� GRto�� ��GRi��GRto�

��GRi � xf �� GRfo�� ��GRi��GRfo�

��GWti �� xf �� xt��GWo�� ��GWti��GWo�

��GW� �� xt�� xf ��GWo�� ��GW���GWo�

��

Since the register is accessed in a manner which guarantees mutual exclusion between GR and GW � the

production rules for this process are given by�

�xf � �GW� �� xt�

xf
GW� �� xt�

�xt � �GWti �� xf �

xt
GWti �� xf �

�xf � �GRi �� GRto�

GRi �� GRto�

�xt � �GRi �� GRfo�

GRi �� GRfo�

�xf �GW��
 �xt �GWti� �� GWo �

�GW� � �GWti �� GWo �

The production rule set uses the inverted sense of GRi �GRi � and generates the inverted sense of GWo

�GWo �� Since GWo is an output� we can safely invert it to generate GWo�

Compiling the tape element control� The tape element control can send d to the right or to the register�

and conditionally compute the new state� The handshaking expansion for the tape element control can be

written as follows�

tapeelem� � ���v�LTin� � v�STin��� �R �� RTout���R �� skip�� �W �� GWo���W �� skip�� I

���R � v�RTout��
 �W �GWi�
 ��R � �W �� � v�I ���STout�LTout�

�n�LTin� � n�STin���RTout��GWo�� I�

�n�RTout� � �GWi � n�I ���STout��LTout��

RVM�� ���

read � ���Li � s � l �� Ro�� �v�Ri���Lo� ��Li��Ro�� �n�Ri���Lo�

��Li � s � t �� GRo�� �v�GRi���Lo� ��Li��GRo�� �n�GRi���Lo�

��

We can decompose the tape element control into the read and write part since the environment guarantees

that they do not overlap� We use process factorization on tapeelem� to decompose it into the following two

processes� using channel I to communicate information needed by the other process�

change � ���v�LTin� � v�STin��� �R �� RTout���R �� skip�� �W �� GWo���W �� skip�� I�

�n�LTin� � n�STin���RTout��GWo�� I� �

right � ���v�I ��� ���R � v�RTout��
 �W �GWi��
 ��W � �R���LTout�STout�

�n�I � � n�RTout� � �GWi��LTout��STout��

We use two dual�railed bits �st�� sf�� and �st�� sf�� to encode s � The di�erent states are�

�s � l��sf� � sf�

�s � t��sf� � st�

�s � r��st� � sf�

The value received on LTin is encoded using � �dlog�K �e wires� The encoding has the following meaning�

LTin� is true just when d � L�

LTin� is true just when d � R�

LTin���LTin���dlog
�
K��e are used to specify the dual�rail encoding of the symbol to be printed�

The information sent on channel I is used to determine the new state and acknowledge� This channel is

encoded using �� wires as follows�

I���I� contain the old state� which is used to generate the acknowledge�

I	��I
 contain the new state� if computable without information from RTin�

I� is true if the new state should be computed from the information received from RTin�

I���I�� contains the dual�rail encoding of whether or not a communication was initiated on RTout �

I����I�� contains the dual�rail encoding of whether or not a communication was initiated on GW �

�This encoding is not meant to be e�cient in any way�� The predicates R and W are given by�

R��s � l�
 �s � t � LTin � R�

W��LTin ��L � LTin ��R� � �s � t�

Since both tapeelem� and right are function blocks� they can be compiled using the standard technique

outlined in ���� We compile read assuming a one�bit dual�railed input on L� this compilation can be easily

generalized to n�bits� for any n� The handshaking expansion for read is�

���Li � sf� � sf� �� Ro�� �Rti �� Lto���R� �� Lfo��� ��Li��Ro��

��Rti � �R���Lto��Lfo�

��Li � sf� � st� �� GRo�� �GRti �� Lto���GR� �� Lfo��� ��Li��GRo��

��GRti � �GR���Lto��Lfo�

��

The production rules are�

Li � sf� � sf� �� Ro �

Li � sf� � st� �� GRo �

Rti
GRti �� Lto �

R�
GR� �� Lfo �

�Li �� Ro �

�Li �� GRo �

�Rti � �R� � �GRti � �GR� �� Lto �

�Rti � �R� � �GRti � �GR� �� Lfo �

RVM�� ���

Note that we have generated the inverted signals Lto � Lfo � Ro and GRo � Since these are output variables�

and are not used by any operators in this process� we can safely invert them to generate Lto� Lfo� Ro� and

GRo� The entire tapeelement with the state bu�er is shown in Fig�
�

read

register

change

buf

STin

R

RTout

LTin

L

LTout

STout

GW

GR

tapeelement

right
RTin

I

Fig�
� Compilation of tapeelement as a number of function blocks�

���� Putting the pieces together

Each component given above is QDI� Some components require the inverted senses of certain signals as

input� As noted in the previous section� the introduction of inverters can compromise the QDI of a circuit�

Observe that the inverted senses of signals are required by tapecontrol and the register� However� the

inputs to these processes are not forked to any other process or operator� As a result� we can safely insert

inverters between the processes to obtain a QDI Turing machine �cf� Fig� ���

Tin

TTout

Tout

L

LTout

LTinnextstate

tapebuf

tape

ta
pe

co
nt

ro
l

Fig� �� A complete Turing machine�

By the construction given above� we can state that

Theorem� �Turing	completeness� ����

Any bounded	tape Turing	computable function can be implemented using a QDI circuit�

� Conclusions

We have shown that quasi�delay�insensitivity� stability and non�interference� and strong con�uence are

equivalent properties of a computation� We constructively demonstrated that� despite these restrictions on

QDI computations� any Turing�computable function has a QDI implementation� This construction used only

those gates that have a direct CMOS implementation�

RVM�� ���

References

��� Leeuwen� J� van� Handbook of Theoretical Computer Science� Volume B
 Formal models and semantics�

MIT Press� �����

��� Martin� Alain J� Compiling Communicating Processes into Delay�Insensitive VLSI Circuits� Distributed

Computing ��������"���� �����

��� Martin� Alain J� The Limitations to Delay�Insensitivity in Asynchronous Circuits� Sixth MIT Confer�

ence on Advanced Research in VLSI� �����

��� Martin� Alain J� Asynchronous Datapaths and the Design of an Asynchronous Adder� Formal Methods

in System Design ��������"��
� July �����

�	� Miller� Raymond E� Sequential Circuits and Machines� John Wiley and Sons� ���	�

��� Seitz� Charles L� Self�Timed VLSI Systems� Proceedings of the 	st Caltech Conference on Very Large

Scale Integration� ��
��

�
� Smith� S�F� and Zwarico� A�E� Correct Compilation of Specications to Deterministic Asynchronous

Circuits� Formal Methods in System Design ���		����� ���	�

��� Lee� Tak�Kwan� Man page for bubble� Caltech Asynchronous Synthesis Tools� �����

