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Abstract— Reducing power consumption and increasing bat-
tery life of nodes in an ad-hoc network requires an integrated
power control and routing strategy. Power optimal routing selects
the multi-hop links that require the minimum total power cost
for data transmission under a constraint on the link quality. This
paper studies optimal power routing under the constraint of a
fixed end-to-end probability of error and compares the power
optimal routes obtained with this criterion with those from the
more commonly used fixed per hop error rate constraint. The
comparison is carried out by looking at the properties of the
power optimal graph, formed by the union of all the power
optimal routes. The paper also provides algorithms to determine
the power optimal routes.

Index Terms— Sensor Networks, Power Control, Routing.

I. INTRODUCTION

In multi-hop networks link reliability, availability, delay
and, last but not least, the battery life of each node are all
entangled through a unique variable, the power spent on each
bit transferred. Power control issues have been addressed for
quite some time in the literature, especially in the context
of cellular networks [12]. While the dependence between
multiple access control and power control is also evident
in cellular networks, the trade-mark of multi-hop networks
is the interdependence between routing and power control.
In [6] the optimal transmission radius in multi-hop wireless
networks was derived under the constraint that all nodes
transmit the same power, which was later relaxed in [7]. In
addition to draining the battery of the node, since a wireless
link is a broadcast mechanism, increasing the power used
to transmit a packet might cause other side-effects such as
interference with other nodes in the network. Therefore, it is
important to determine the minimum power necessary to route
a packet, and recent work in ad-hoc network has focused on
the problem of optimized routing that minimize the total path
power consumption, see e.g. [11], [15], [10].

Given the per hop transmit power for a packet and its route,
the power cost of a path is defined to be the sum of the per-hop
transmit power along the path. Routes that minimize the power
cost under a quality of service constraint are said to be power
optimal. The union of the optimal multi-hop paths between all
pairs of nodes for a specific optimality criterion form a graph,
which we will refer to as the power optimal graph. The power
optimal graph is the ensemble of optimum physical (single
and multi-hop) links supporting peer-to-peer transmission for
each pair of nodes optimally. Clearly the power cost of each
route depends on the optimality criterion chosen and a natural
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question that arises is how the optimal graph behaves as a
function of the optimality criterion. A study of the properties
of the power-optimum graph for a fixed per hop error rate is
in [1] where it was shown that the power optimal graph with
a fixed per hop error rate constraint has no crossing edges. As
will be clarified in Section II, the problem with using a per
hop error rate constraint is that the quality of the end-to-end
connection is not guaranteed. As a result, paths with larger
number of hops will produce not only an increased delay but
also an increased error rate.

This paper derives a solution for the power optimum route
problem under an end-to-end error rate constraint and carries a
comparative study of the power optimal graphs obtained with
those obtained with a per hop error rate constraint. Note that
we do not consider multiple access issues as we assume an
ideal scenario where all transmissions are scheduled to occur
at different times (or over-different bands simultaneously),
similarly to [4]. The symbol error rate expression is calculated
accordingly, without considering the effect of multi-access
interference. We also do not investigate delay constraints.

The interesting conclusion of our study is that the end-
to-end fixed error rate power optimal graph always contains
the per-hop fixed error rate power optimal graph, with some
additional edges which asymptotically, as the end-to-end error
rate required ε→ 0, tend to vanish.

The paper is organized as follows: in Section II we intro-
duce the power optimal routing with a constant end-to-end
constraint, providing general bounds that allow to simplify
the solution of the problem for arbitrary error rate (SER)
expressions. Specific SER models are introduced in Section
III. The properties of the power optimal graph are studied in
Section IV and in Section V we provide a distributed algorithm
to calculate the power optimal paths. All the proofs for the
Theorems and Lemmas in the following can be found in [16]
and will be omitted for brevity.

II. CONSTANT END-TO-END ERROR RATE

We consider the case when a packet is transmitted from
a source to its destination along multiple hops where there is
some probability of error per hop that depends on the distance
between the hops and the transmit power. In existing work,
the assumption made is that if the received power (signal-to-
noise ratio) Precv ≥ γ where γ is some constant, then the
packet is successfully received; otherwise the packet is lost.
The symbol error rate (SER) is a monotonically decreasing
function of Precv therefore, for each hop Precv can be made
large enough that the SER for the hop satisfies

SER ≤ SER(γ) (1)



Since any transmission will use the minimum amount of power
required to meet the necessary error rate, this means that
SER = SER(γ). Assuming that errors per hop are inde-
pendent, this implies that the end-to-end error rate SERe2e is
given by

SERe2e = 1 − (1 − SER(γ))N (2)

where N is the number of hops along the path. SERe2e is
monotonically increasing with N .

Instead of using a routing scheme and power cost metric that
allows the end-to-end error rate to increase with hop count,
we examine the effect of constraining the end-to-end error rate
to be a constant. In the following section, we formulate this
optimization problem.

A. Optimization Problem

Let X = (X0,X1, . . .,XN ) be an N -hop path from nodeX0
to XN that passes through nodes X1, X2, . . ., XN−1 in that
order. Let Pi be the power allocated for the hop (Xi−1,Xi),
and let SERi be the corresponding symbol error rate for the
hop (i = 1, 2, . . . , N ). Assuming independent errors per hop,
the end-to-end SER is given by

SERe2e = 1 −
N∏

i=1

(1 − SERi) (3)

We define the power cost function as follows:

PC∗(ε;X) = min
P1,...,PN

N∑

i=1

Pi given SERe2e ≤ ε (4)

We will assume that we are interested in the case when the
quantity ε is much smaller than one, i.e., when there is a very
low probability of error.

A quick analysis shows that the optimization problem (4)
leads to equations that do not have simple closed form
solutions in terms of the power per hop and the power cost,
even for the simplest models for the SER.

We formulate our approximate power cost metric by the
following equations:

PC(ε;X) = min
P1,...,PN

N∑

i=1

Pi given
N∑

i=1

SERi ≤ ε (5)

We can justify this approximation by the following result:
Theorem 1: Assuming ε ≥ 0 and ε+4ε2 < 1/

√
2, and given

the power cost metrics PC∗ and PC defined by equations (4)
and (5) respectively, we have:

PC(ε+ 4ε2;X) ≤ PC∗(ε;X) ≤ PC(ε;X)
The proof of Theorem 1 only relies on the power cost metric
being a minimization problem where the error rate constraint
is met with equality at the solution. In particular, it does not
depend on the expression for SERi, or the fact that metric
being minimized is the sum of the power per hop.

For the rest of this paper, we use PC as our power
cost metric because it will lead to analytical expressions for
the power cost of a path.While this is an approximation,

Theorem 1 provides a way of bounding the error E(ε;X) =
PC(ε;X) − PC∗(ε;X) since

E(ε;X) ≤ PC(ε;X) − PC(ε+ 4ε2;X) (6)

When we compute the power cost with specific models for
SER, we will use this expression to show that the approxima-
tion error is O(ε), and thus small compared to the power cost
of the path.

Error correction mechanisms (both ARQ and FEC) can
be easily included in our framework with minor changes as
discussed in [16].

III. ERROR RATE MODELS

To study the optimal power allocation strategy for a path, we
examine two different models for SER. Using these models,
we derive analytical expressions for PC(ε;X). These closed
form expressions will be used in Section V to derive algo-
rithms for computing power optimal paths.

A. Time-invariant Attenuation

The first model is a deterministic power model where we
assume that the receive power of a link is attenuated by a time-
invariant quantity. This attenuation coefficient can be given a
physical interpretation by setting it to dα/a, where d is the
distance between the transmitter and receiver, and α > 2 and
a are constants. We can assume that the expression for SER
of a link is given by:

SERi = be−Pi/ai (7)

where Pi is the transmit power and ai is the time-invariant
attenuation coefficient of the link. Equation (7) is sufficiently
parameterized to be able to provide a bound for the proba-
bility of error for most digital modulations that are detected
optimally in the presence of additive Gaussian noise [12].

Theorem 2: Under the assumptions of Theorem 1 and the
link SER assumption given by equation (7), the optimal power
cost PC(ε;X) for path X = (X0,X1, . . . , Xn) is obtained
when

1) SERj = ε aj∑N

i=1
ai

2) Pj = aj

(
log(b/ε) + log(

∑N
i=1 ai/aj)

)

3) E(ε;X) ≤ log(1 + 4ε)
∑N

j=1 aj

where aj , SERj , and Pj are the attenuation coefficient, link
error rate, and link power allocation respectively for link
(Xj−1,Xj).

B. Large and Small-Scale Fading

In a wireless mobile scenario the received power is affected
by many more factors than the mere distance and it is common
to represent the received power as a doubly stochastic random
variable, with long term and short term variations [12]. The
transmit power is attenuated by two factors: GL(t) caused by
large-scale fading, and GS(t) caused by small-scale fading.
To account for the effects of large and small-scale fading, the
time-varying SER of a link is given by the random process

SERi = be−aΩτi (8)



where a and b are constants, and Ωτi
is the received power,

whose statistics are function of position and time. As is
standard, we assume a log-normal distribution for the large-
scale fading coefficient. For the small scale fading several
distributions have been introduced [13] and using (8) the
corresponding average SER for a given large scale fading
parameter is the characteristic function of the small scale
fading density. For example, for the Nakagami m-distribution
the expected SERi for a link is given by [13]:

SERi = b(1 + Pi/ai)−m (9)

where ai is the contribution from the slow-varying large-scale
fading coefficient and Pi is the average transmit power.

The Nakagami m-distribution captures the intermediate
ground between strong line-of-sight and non–line-of-sight
systems. Note, in fact, that Rayleigh fading is a special case
of Nakagami fading when m = 1 while the deterministic case
is obtained as m→ ∞.

It is not difficult to generalize our power cost expressions
and power optimal routing to these scenarios:

Theorem 3: Under the assumptions of Theorem 1 and the
link SER assumption given by equation (9), the optimal power
cost PC(ε;X) for path X = (X0,X1, . . . , Xn) is obtained
when

1) SERj = ε
a

m/(m+1)
j∑N

i=1
a

m/(m+1)
i

2) Pj = aj

(
(b/ε)1/m

(∑N
i=1(ai/aj)m/(m+1)

)1/m

− 1
)

3) E(ε;X) ≤ 4ε
m (b/ε)1/m

(∑N
i=1 a

m/(m+1)
i

)(m+1)/m

where aj , SERj , and Pj are the large-scale attenuation coef-
ficient, link error rate, and link power allocation respectively
for link (Xj−1,Xj).

IV. PROPERTIES OF POWER OPTIMAL PATHS

In this section we discuss some of the consequences of
adopting an end-to-end SER constraint for power optimization.
In particular, we compare our results to those reported by [1],
which assumes that the amount of power required for a link
(Xi−1,Xi) is given by

Pi = log(b/ε)
dα

i

a
(10)

where a and α > 2 are constants, and di = |Xi−1 −Xi| is the
distance between points Xi−1 and Xi. This model assumes
that the link SER is constant (= ε), and the attenuation
coefficient ai is given by dα

i /a.
Under this model, the power cost of using a link does not

depend on the path under consideration, unlike the link power
allocation in Theorems 2 and 3. The power cost using this
model, which we denote KC(ε;X), is given by

KC(ε;X) = log(b/ε)
N∑

i=1

dα
i

a
= log(b/ε)

N∑

i=1

ai (11)

where di = |Xi−1 −Xi| is the distance between points Xi−1
and Xi. Note that since ε only appears in the factor in front

of this particular power cost metric, the best path to route a
packet according to KC will not depend on ε [1].

We compare the properties of power optimal paths obtained
by the metric introduced in Theorem 2 with those obtained
using the metric from equation (11).

A. Comparing Power Cost Metrics

If we use equation (10) to determine the power for a hop,
then the SER per hop can be as high as ε, thereby increasing
the total end-to-end SER. The metric KC will therefore un-
derestimate the amount of power required to transmit a packet
along a path with an error that does not exceed ε. Examining
the expressions in Theorem 2, we conclude that

PC(ε;X) =
N∑

j=1

aj

(
log(b/ε) + log(

N∑

i=1

ai/aj)

)
(12)

≥ KC(ε;X) (13)

with equality holding if and only if we are considering a
one-hop path. If we treat pj = aj/

∑N
i=1 ai as a probability

distribution, observe that

PC(ε;X) =

(
N∑

i=1

ai

) (
log(b/ε) +

N∑

i=1

pi log 1/pi

)

≤ KC(ε;X)
(

1 +
logN

log(b/ε)

)
(14)

with equality holding when p1 = p2 = · · · = pN . When
examining long paths with equidistant hops, using a simple
additive cost function will underestimate the power cost by
a factor that grows logarithmically with the number of hops
compared to a metric that keeps the end-to-end error bounded.

B. Comparing Optimal Paths

The purpose of computing the power cost metric is two-
fold. First, given a path, it determines the amount of power
required to transmit a packet along that path as well as the
amount of power necessary per hop. Secondly, the power cost
metric allows us to compare two paths between a source and
destination to determine which path would require less power
for transmission. Section IV-A showed that the KC and PC
metrics might differ substantially when determining the power
necessary to transmit a packet along a given path. In this
section, we will show that the KC and PC metrics might select
different paths.

We can demonstrate that PC-optimal paths can differ from
KC-optimal paths by means of a simple example. Consider the
scenario in Figure 1 with three points A, B, and C. Without
loss of generality, we can fix the distance between A and C to
be one unit. Let d1 be the distance between A and B, and let
d2 be the distance between B and C, as shown in Figure 1.

We consider optimal paths between points A and C. We can
calculate the boundary between the regions where a one-hop
path (A,C) is optimal and where a two-hop path (A,B,C)
is optimal as a function of d1 and d2 according the KC and
the PC metrics. Obviously d1 and d2 are constrained by the
triangle inequality d1 + d2 ≥ 1. Also, if d1 ≥ 1 or d2 ≥ 1,
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Fig. 1. Comparing paths in a three node network

then it is clear that a one-hop path is optimal for both PC and
KC. Therefore we restrict our attention to the region specified
by the constraints 0 ≤ d1 ≤ 1, 0 ≤ d2 ≤ 1, and d1 + d2 ≥ 1.
These regions are shown in Figure 2, where the horizontal
and vertical axes are dα

1 and dα
2 respectively, with α = 2 and

b = 0.5.
The points below curve F do not satisfy the triangle in-

equality and are therefore infeasible. All the other lines show
the boundary between a one-hop path and a two-hop path
according to different power cost metrics. Curve L corresponds
to PC(ε + 4ε2; ·) and curve U corresponds to PC(ε; ·), for
ε = 3 × 10−2. The true boundary for PC∗ is between these
two lines by Theorem 1. Curve K corresponds to KC(ε; ·).
This plot shows that for all points between curves U and K,
the optimal path selected based on KC differs from the optimal
selected based on PC∗.

C. Dependence of Paths on Error Rate

As noted above, the optimal routes in terms of power cost
according to metric KC will not depend on the value of ε.
In this section we show that PC-optimal paths change if we
change ε.

Consider the example shown in Figure 1 with the same
parameters as in Section IV-B. Figure 3 is similar to Figure 2,
except we show the boundary between one-hop and two-hop
paths for different values of ε. It is evident that the region
between curves U and L2 corresponds to cases where a one-
hop path is optimal for ε = 3×10−2, whereas a two-hop path
is optimal if ε = 10−3.

Examining the equation for the power cost metric in (12) the
term log(b/ε) becomes more prominent as ε → 0. Therefore
in the limit as ε → 0, the difference in power cost between
paths obtained with the PC metric and those obtained with
the KC metric will be negligible.
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Fig. 2. Boundary of 1-hop v/s 2-hop paths, three points.
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Fig. 3. Boundary of 1-hop v/s 2-hop paths, three points.

D. The Graph of Power Optimal Paths

Given two points, we can determine the path between them
that minimizes the power cost. Let G(ε) = (V,E(ε)) be the
directed graph formed with vertex set V being the set of nodes
in the network, and edge (x, y) ∈ E(ε) just when the edge is
part of some power optimal path between two nodes in the
network. This is referred to as the graph of power optimal
paths [1]. It is clear that if we use the KC metric, then the
graph will not be a function of ε.

1) Crossings in Optimal Paths: Power optimal paths com-
puted according to KC have the property that two power
optimal paths will never cross each other [1]. Unfortunately,
this property no longer holds when we use the PC metric.
Consider the same triangle as shown in Figure 1, except we
let the side AC have distance d3. From geometry, we know
that

d23 = d21 + d22 − 2d1d2 cos θ

Consider the case θ = π/2, α = 2, and d1 = d2 = d. We
know that d3 =

√
2d.

PC(ε; (A,C)) =
2d2

a
log(b/ε)

PC(ε; (A,B,C)) = PC(ε; (A,C)) +
2d2 log 2
a

Therefore, we conclude that in this case at least it is cheaper
to send a packet directly from A to C instead of via B. If we
pick a fourth point D that is the reflection of B in AC (in the
case we are considering, this makes ABCD a square), then
by symmetry we know that the power optimal path from B
to D is the one-hop path (B,D). Hence, there are two power
optimal paths (A,C) and (B,D) that cross each other.

2) KC optimal and PC optimal graphs: In the previous
section we showed that the graph of PC-optimal paths exhibits
crossings. In this section we show an inclusion property
relating the graph of KC-optimal paths with the graph of PC-
optimal paths. The main result we will establish in this section
is that every edge in the graph of KC-optimal paths also occurs
in the graph of PC-optimal paths for all values of ε.

Lemma 1: A one-hop path that is power optimal by the KC
metric is strictly power optimal by the PC metric.
We can also see this property in Figure 2, where the PC metric
always picks a one-hop path whenever the KC metric does.



Theorem 4: Let G = (V,E) be a graph of power optimal
paths by the KC metric, and let G′(ε) = (V,E′(ε)) be a graph
of power optimal paths by the PC(ε; ·) metric. Then E ⊆
E′(ε).
Given two nodes, there may be multiple paths between them
that are optimal in terms of power cost. This implies that
the graph of power optimal paths according to either power
cost metric need not be unique. As Lemma 1 guarantees
strict optimality in terms of the PC metric, the result from
Theorem 4 holds regardless of which graph is chosen for
either power cost metric. This also implies that the union of
all possible KC optimal graphs is a subgraph of the graph of
PC optimal paths.

3) Asymptotic Properties of Optimal Paths: As noted in
Section IV-C, we expect that the difference in the cost of
paths chosen by the PC metric and KC metric to be negligible
as ε → 0 because the term log(b/ε) will dominate, reducing
the difference between the numerical value of PC and KC
by equations (13) and (14). In this section we examine the
behavior of the optimal paths themselves as ε→ 0.

Theorem 5: Let X be a PC(ε; ·)-optimal path and let X′

be a KC-optimal path between points A and B. Then either
X is also KC-optimal, or there exists an ε′ > 0 such that

PC(ε′;X′) ≤ PC(ε′;X) (15)
Theorem 5 states that for a suitable choice of ε, the PC(ε; ·)
criterion picks a path that is also optimal by the KC criterion.
Therefore, as ε→ 0, the paths chosen by PC will converge to
those chosen by KC.

V. COMPUTING POWER OPTIMAL PATHS

Computing the optimal paths between points in a network
using the KC metric is a simple task. The reason for this is
that the cost of a link between two nodes is simply a log(b/ε),
where a is the attenuation coefficient of the link. Therefore,
we can create a cost matrix MN×N where entry mi,j the
attenuation coefficient of the one-hop path between node i
and node j in the network. The power optimal paths are easily
obtained by using an all-points shortest-path algorithm on the
matrix M (see e.g., [3]).

Instead, if we solve the end-to-end optimization problem
using the PC metric, the cost of a hop depends on the path
that uses the hop by Theorems 2 and 3. Therefore the matrix
formulation described above will not compute the correct
paths. In this section we describe algorithms that will compute
the PC-optimal paths for a graph that are generalizations of
standard shortest-path algorithms.

For the generalization, we rely on the existence of two path
cost functions c and d. One of these, c, will correspond to the
power cost of the path, and the other will be a suitably defined
auxiliary function. We require certain properties of this pair
of cost functions.

Property P1. Both cost functions are assumed to satisfy a
reversibility criteria, namely the cost of path (X0, . . . , Xn) is
the same as the cost of path (Xn, . . . , X0).

Property P2. Let X = (A,X1, . . . , Xn−1, B) and Y =
(A, Y1, . . . , Ym−1, B) be two paths between nodes A and B.

Further, let X′ = (A,X1, . . . , Xn−1, B, Z1, . . . , Zl−1, C) and
Y′ = (A, Y1, . . . , Ym−1, B, Z1, . . . , Zl−1, C) be the exten-
sions of paths X and Y by the same set of hops to node
C. The cost functions c and d are assumed to satisfy the
following property:

(c(X) < c(Y)) ∧ (d(X) < d(Y))
⇒ (c(X′) < c(Y′)) ∧ (d(X′) < d(Y′))

In other words, if path X between two nodes has a lower cost
function in terms of both functions c and d than path Y, then
all extensions of path X to a third node will have a lower cost
(in terms of both c and d) when compared with extensions
to Y. This property allows us to discard path Y from further
consideration since it will never be a subpath of an optimal
path between node A and any other node in the network. Note
that while this property is stated for the case when both paths
are extended by an l-hop path, it can be established by proving
it for one-hop extensions and then applying induction. We say
that path X dominates path Y. A path X is said to be feasible
if it is not dominated by any other path.

Property P3. We assume that a subpath will always have lower
cost (using both c and d cost functions) than the original path.

Given these cost functions, we now describe algorithms for
computing optimal paths in a network. We will instantiate
these algorithms using different cost functions to solve the
power optimal route computation problem according to the
power cost metrics of Theorems 2 and 3. The correctness of
our algorithms depends on the following result. We use the
notation pXY to denote a path from X to Y .

Lemma 2: Let Sk be the set of all feasible paths that have
at most k hops. Then every l-hop subpath in Sk is contained
in Sl.
We now establish the following lemma that can be used to
construct a set Sl+m given sets Sl and Sm.

Lemma 3: The following procedure can be used to con-
struct Sl+m given Sl and Sm:

1) Initialize Sl+m to Sl.
2) For every pair of paths pAB ∈ Sl and qBC ∈ Sm

a) Place the concatenated path rAC in set Sl+m if it
is not dominated by an existing path from A to C
in Sl+m.

b) Eliminate all paths from A to C that are in Sl+m

that are dominated by rAC .
We use the notation Sl ⊗Sm to denote the operation specified
in Lemma 3. Given Lemma 3, the algorithm for computing
optimal paths is straightforward. We provide two techniques
for computing optimal paths.

Algorithm 1 (Single step): The following algorithm com-
putes SN in variable S, where N is the number of nodes
in the network.

1 S1 ← {(i, j): 1 ≤ i, j ≤ N, i �= j}
2 S ← S1
3 for i ← 1 to N − 1
4 S ← S ⊗ S1

A faster technique for computing SN is shown below.



Algorithm 2 (Doubling): The following algorithm com-
putes SN in variable S, where N is the number of nodes
in the network.

1 S ← {(i, j): 1 ≤ i, j ≤ N, i �= j}
2 for i ← 1 to �lgN�
3 S ← S ⊗ S

Once all the candidate paths are computed, we can pick the
optimal path from A to B according to metric c by picking the
least cost path (according to c) among the candidates in SN .
Notice that both algorithms shown above turn into the standard
matrix-based algorithms for shortest path computation if c and
d are the same cost function that is additive.

Finally, we present the cost functions c and d for the two
power cost metrics derived in Section III. In both cases, c(X)
will always be the power cost PC(ε;X).

Theorem 6: The following two cost functions satisfy prop-
erties (P1)–(P3).

c(X) =
N∑

j=1

aj

(
log(b/ε) + log(

N∑

i=1

ai/aj)

)

d(X) =
N∑

j=1

aj

where aj is the attenuation coefficient of the jth hop in X.
Theorem 7: The following two cost functions satisfy prop-

erties (P1)–(P3), assuming that (b/ε) > 1.

c(X) = (b/ε)1/m




N∑

j=1

a
m/(m+1)
j




(m+1)/m

−
N∑

j=1

aj

d(X) =
N∑

j=1

a
m/(m+1)
j

where aj is the attenuation coefficient of the jth hop in path
X and m is the Nakagami m-parameter.
Since the definition of c(X) in Theorem 6 is the same as
the power cost of a path as defined by Theorem 2, we can
instantiate Algorithms 1 and 2 using the cost functions from
Theorem 6 to compute the power optimal paths when we
consider time-invariant attenuation.

Since the definition of c(X) in Theorem 7 is the same
as the power cost of a path as defined by Theorem 3, we
can instantiate Algorithms 1 and 2 using the cost functions
from Theorem 7 to compute the power optimal paths when
we consider large and small-scale fading.

VI. DISCUSSION AND CONCLUSIONS

This paper describes the additional cost and complexity
necessary to guarantee the same error rate across all paths in a
multi-hop network and compares the power optimal routes ob-
tained with this criterion to the power optimal routing obtained
with a fixed per hop error rate constraint. We examined the
power cost of paths under two different models for the symbol
error rate of a link, and provided several results that relate the
routes obtained with our criterion with those obtained from a

fixed per hop constraint. Finally, we provided an algorithm to
compute power optimal routes.

There are important issues that this paper does not address:
the fixed end-to end error rate constraint does not incorporate a
mechanism to prevent congestion at specific nodes. In addition,
since power optimal routing does not uniformly distribute
traffic, it ends up draining the resources of some nodes more
than others. Future investigations will be directed towards
evaluating the impact of power optimal routing on the network
lifetime [9], [10].
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