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Abstract—This paper introduces novel circuits to mitigate
power consumption in asynchronous logic. By exposing a preex-
isting timing assumption in quasi-delay insensitive (QDI) circuits,
we develop a set of circuit templates that reduce dynamic power
consumption while maintaining the robustness of QDI circuits.
We refer to these as relaxed quasi delay-insensitive circuits
(RQDI). Power consumption is reduced in four ways. First, we
present a circuit template that saves power by reducing the
logic required to generate enable/acknowledge signals. Second,
we develop voltage converters for asynchronous channels that
allow non-performance critical components to be moved to
lower voltage domains. Third, we propose a circuit template
that improves upon the use of multiple voltage domains by
keeping the data logic in the high voltage domain, but moves
the enable/acknowledge logic to the low voltage domain. Fourth,
we utilize a novel 2-phase buffer to half the switching in global
routing and static switching networks. Experiments show that we
can reduce energy by 30-50%, with a minimal impact on area
and performance.

I. I NTRODUCTION

Technology scaling through the deep submicron has greatly
increased the importance of minimizing power consumption
in circuit design. Transistor threshold voltage,Vth, no longer
scales well [3] resulting in a slower scaling of the supply
voltage,Vdd. Hence, performance improvements come at an
increasing cost in energy. As performance per watt becomes
more critical than frequency alone, circuit designers may be
forced to abandon the highest performing circuits for more
energy efficient alternatives.

Asynchronous circuits have a couple of advantages over
synchronous circuits in terms of low power design. The lack
of a clock network is a substantial advantage. High-speed
clock networks have been known to account for 30-35% of
total power in microprocessors [2]. In addition, asynchronous
circuits have the equivalent of perfect clock gating. High
performance asynchronous circuits are composed of many par-
allel processes (fine-grain pipelined circuits). These processes
communicate over channels using handshakes. Processes that
are not involved in the current computation do not burn
dynamic power.

Unfortunately, asynchronous circuits lose some of their
power savings in orchestrating handshakes between processes.
Four phase handshakes, used extensively in quasi delay-

insensitive (QDI) circuits, charge and discharge wires in their
data channels four times per cycle. The power dissipated in
channels is significant since wires there tend to be longer than
wires that are local to a process. A significant amount of power
is also lost in generating enable/acknowledge signals. This
is particularly frustrating since those signals are not directly
involved in computing the function of a particular process,
but rather in detecting the validity and neutrality of inputs and
outputs.

In this paper we present the following circuit techniques to
reduce power consumption:

• HCHB Template: We define a new circuit template that
reduces the logic needed to generate enable/acknowledge
signals by applying an easily satisfied timing assumption.

• Voltage Scaling: We implement voltage scaling in two
ways. One, we design efficient voltage converters that
operate on data channels to support multiple voltage
domains. Two, we present a circuit template that operates
with its forward path (data logic) in a nominal voltage
domain and its return path (enable/acknowledge) in a
lower voltage domain, thus keeping latency constant.

• Two Phase Static Switching Networks:We propose
an efficient two phase buffer and protocol converters
for global communication and static switching networks,
which are particularly important in FPGAs [12].

This paper is organized as follows. Section 2 reviews QDI
logic, defines our conservative timing assumption and presents
the resulting logic template. Section 3 introduces circuits to
perform voltage scaling. Section 4 introduces a two phase
buffer for static routing and its associated converters. Section
5 discusses the setup details of our experiments. Section
6 presents our results. Section 7 addresses previous work.
Section 8 discusses future work and we conclude in Section
9.

II. RELAXED QDI LOGIC

QDI circuits are quite robust in terms of process variations
and design tolerances. In this work, we expose a timing
assumption used in staticizers for QDI logic and apply it to
other parts of circuits. Our goal is to optimize circuits with
respect to area and power while maintaining the robustness
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of QDI. The resulting circuits are no longer strictly QDI. We
refer to them as relaxed QDI (RQDI).

A. QDI Circuits

Quasi delay-insensitive circuits are designed by decompos-
ing a high level description of an asynchronous system into
production rules (pull-up and pull-down networks) through
numerous steps [6]. For our purposes, we will focus on
handshaking expansions (HSE) and preestablished circuit tem-
plates. A commonly used QDI circuit is the weak condition
half buffer (WCHB) shown in Figure 1 and described with the
following HSE:

*[[Re ∧ Lf −→ Rf ↑[]Re ∧ Lt −→ Rt↑];Le↓;
[¬Re ∧ ¬Lf ∧ ¬Lt];Rf ↓,Rt↓;Le↑]

Fig. 1. A WCHB with one staticizer shown.

The WCHB takes a dual-rail (four phase) input and pro-
duces a dual rail output. There are two distinct phases: i)
an evaluation phase (the first line of the HSE) where inputs
arrive and the output becomes valid, and ii) a reset phase (the
second line of the HSE) where the inputs and output reset. It is
considered a half buffer because it takes a pair of them to store
a single data token. It has a forward latency, or simply latency,
of two transitions and a cycle time of ten transitions. In high
performance asynchronous circuits, we strive to design circuits
with a maximum latency of two transitions and a maximum
cycle time of 18 transitions. A WCHB is handy for buffers,
but the precharge half buffer (PCHB) is preferred for buffered
logic [4]. The PCHB template for two inputs and one output
is shown in Figure 2 and the HSE for the PCHB is as follows:

*[[Re ∧ Lf −→ Rf ↑[]Re ∧ Lt −→ Rt↑];Le↓;
[¬Re];Rf ↓,Rt↓; [¬Lf ∧ ¬Lt];Le↑]

The PCHB template has a latency of two transitions and
a cycle time of 14 transitions. The main difference from the
WCHB is that the neutrality of the inputs is detected onLe↓
rather thanR↓. As a result, input neutrality can be detected in
multiple transitions without impacting latency, which allows
for a greater number of inputs. In a WCHB, neutrality is
detected in the pull-up stack of the data rails. This limits the
number of inputs possible in a WCHB because more inputs
means more series PMOS transistors in the pull-up stack.
Generally, we limit ourselves to three series PMOS in any

Fig. 2. A two input and one output PCHB template.

stack. Any more and the rise time will be poor and charge
sharing in dynamic nodes becomes problematic.

An extension to the PCHB is the PCEHB. In the PCEHB,
Re and Le are combined in a separate c-element. This im-
proves the latency by reducing the number of series PMOS and
NMOS in the data rail stacks by one. However, the PCEHB
increases the cycle time by four transitions (a non-inverting
c-element is two transitions and it needs to be set and reset in
one cycle) making the total 18 transitions.

In general, we try to stick to the following guidelines for
high performance QDI logic:

1) Avoid three transition or less cutoff paths so that signals
are full swing.

2) Keep the latency of each stage to two transistions.
3) Keep the cycle time of each stage within 18 transistions.
4) Dynamic nodes cannot be directly shared between

stages. These signals must be buffered first.
5) The output of all state holding logic is staticized (held

by weak feedback).
6) Wires in channels are fully shielded.

Guideline 3 may be flexible depending on the application.
We often find that even with a worst case cycle time of 18
transitions the frequency of the system is limited by the latency
of loops with a suboptimal number of tokens. For this reason
we place greater priority on optimizing latency over cycle time.
Guideline 4 is meant to prevent bit flips on dynamic nodes.
Dynamic nodes are more susceptible to crosstalk because there
are times that they are only driven by weak feedback.

B. Half Cycle Timing Assumption

The WCHB, PCHB, and PCEHB circuit templates (and QDI
circuits in general) are highly tolerant of process variations
because each up and down transition is sensed. The only
timing assumption allowed in QDI design is the isochronic
fork assumption [7]. This timing assumption states that the
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difference in delay between branches of a wire is insignificant
compared to the gate delays of the logic reading their values.

Fig. 3. An error that can occur in QDI logic without the half cycle timing
assumption.

Upon closer inspection, however, there is a second timing
assumption that is quite common in QDI circuits. Observe the
false rail of a WCHB shown in Figure 3. In order for this
circuit to work properly a timing assumption is made with
respect to its staticizer. Let us assume that the inverter driving
Rf is incredibly slow. Rf ↓ has fired, due toLf ↑ and Re↑,
butRf ↑ has not. WhenL.f ↓ fires, the c-element becomes state
holding and the only active current is the weak feedback. Even
though the inverter is weak, it can flipRf because there is
no opposing current. The resulting error is due to an actual
analog problem and not an isochronic fork.

To avoid such timing errors with staticizers we introduce
the half cycle timing assumption. The half cycle timing
assumption (HCTA) is a local timing assumption (internal to a
process) that assumes a small amount of combinational logic
(one or two transitions) will always switch within one half
cycle of a process. With cycle times of 10-18 transitions, this
assumption has a timing margin of 2.5x-4.5x. In addition, dur-
ing the half cycle communication occurs across the channels
where wires tend to be longer than wires internal to a process.
Transitions across these wires will be slower, making the half
cycle even longer compared to the two transition logic.

In QDI, the HCTA is only needed to guarantee the correct
operation of staticizers. We can reduce logic and design new
valid circuits by extending the HCTA for general use. We
refer to the resulting logic as relaxed quasi-delay insensitive
(RQDI). RQDI logic has a robustness similar to QDI logic
because they both use the same timing assumptions and have
the same timing margins. Table I compares the timing mar-
gins across different circuit families. QDI and RQDI exhibit
extremely large timing margins without any impact on their
latency or cycle times. A tremendous increase in latency and
cycle time is required to get similar timing margins with
synchronous or bundled data logic.

C. HCHB Circuit Template

We can reduce the logic needed to compute the neutrality in
logic templates by applying the HCTA. Consider the following
HSE for the half cycle half buffer (HCHB):

*[([Re ∧ Lf −→ Rf ↑[]Re ∧ Lt −→ Rt↑];Le↓; ),N ↓;
[¬Re], ([¬Lf ∧ ¬Lt];N ↑);Rf ↓,Rt↓;Le↑]

We’ve introduced a variableN , for neutrality, with the inten-
tion of only sensing theN ↑ transition.N detects the neutrality

Circuit Family Timing Margin Tradeoff
Synchronous m mL, mC

Bundled Data (two phase) m mL, mC

Bundled Data (four phase) m mL, 2mC

QDI (staticizers) 2.5x − 4.5x none
RQDI 2.5x − 4.5x none

TABLE I
TIMING MARGINS ASSOCIATED WITH VARIOUS CIRCUIT FAMILIES.

SYMBOLS m, L, AND C ARE THE TIMING MARGIN FACTOR, LATENCY,
AND CYCLE TIME RESPECTIVELY.

of L and it can be implemented as the nor ofLf andLt . N ↓
can fire at the beginning of the evaluation phase (first line of
HSE) whenL becomes valid, but doesn’t need to fire until the
beginning of the reset phase (second line of HSE) beforeRe↓
arrives, a half cycle later. We make the assumption thatN ↓
will fire before the second half of the cycle and add no logic
to detect this transition.

Fig. 4. A two input and one output hchb template.

Applying the half cycle timing assumption results in the
HCHB template shown in Figure 4. Validity and neutrality are
checked in the data rails similar to the WCHB. This reduces
the logic forLe and gets rid of one series NMOS in the pull
down stack. It takes two transitions to detect the neutrality
of the inputs. This does not affect the two transition latency
of the circuit, but makes the cycle time 14 transitions. An
additional requirement of the HCHB over the PCHB is that
the pull down networks of the data rails need to wait for all
the inputs to become valid before firing. In some cases the pull
down stacks already wait for validity. In other cases the pull
down stacks need to be augmented to wait for input validity.

Figure 5 shows the false rails of a PCHB and HCHB and2
process and their corresponding transistor widths. The false
rail of the HCHB has been extended to wait for the validity
of bothL0 andL1. The HCHB pull down stack has two more
transistors than the PCHB, but area saved elsewhere in the
circuit more than makes up the difference. In some circuits,
e.g. a full adder, the pull down stack will already guarantee
input validity with no additional effort. In circuits with many
inputs, the validity can be checked in a separate single rail
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Fig. 5. The false rail stacks of an and2 process for a PCHB(left) and a
HCHB(right). The numbers are the transistor widths in lambda units (half
minimum gate length).

pseudo output.

III. V OLTAGE SCALING

A high level discussion on voltage scaling in asynchronous
architectures can be found in [5]. Energy efficient pipelines are
discussed in [13]. In this section we aim to facilitate voltage
scaling in asynchronous circuits by: 1)introducing a pair of
efficient voltage converters, and ii) proposing a dual voltage
circuit template that has constant latency.

A. Efficient Voltage Converters

The standard low to high voltage converter is shown in
Figure 6. The input signalin has a voltage range fromGND

to VDDL. This signal is not directly used in a pull up network
because ifVDDL is less thanVDD − Vth then in cannot turn
off PMOS transistors in theVDD domain. Instead,in and its
inverted version are fed into the pull down NMOS transistors
of a cross coupled PMOS structure. When one of the NMOS
transistors becomes active it begins to discharge its output
node. A short circuit then exists between the NMOS and
PMOS transistors. If the NMOS transistor is sized correctly,
it will win the fight with the PMOS transistor and eventually
both cross coupled nodes will switch. Higher voltage signals
can be used freely in lower voltage domains, therefore a high
to low converter is not needed.

Fig. 6. The standard voltage converter.

In asynchronous circuits, we will be converting voltage
across channels rather than across simple signals. For dual rail
codes, we have three signals to convert: the two data rails and
the enable rail (acknowledge). In channels going from a lower
to higher voltage domain, the data rails need to be converted
to the higher voltage. In channels going from a higher to lower
voltage domain, the enable rail needs to converted to the higher
voltage.

Fig. 7. A pipelined high voltage to low voltage dual rail converter. The pull
up feedback on the right stack is explicitly shown.

The short circuit that occurs in the conventional voltage
converter can be avoided by guarding the conversion with
high voltage signals that are available in the handshake. The
following is the HSE for high to low voltage converter:

*[([Re ∧ Lf −→ Rf ↑[]Re ∧ Lt −→ Rt↑];Le↓; ), en↓;
[R e ∧ L f ∧ L t]; en↑);Rf ↓,Rt↓;Le↑]

This HSE is similar to the HCHB. The main difference
is that we use inverted versions of theRe, Lf , and Lt.
Conveniently, the half cycle timing assumption allows us to
use inverted versions of signals without having to check each
transition on the inverted and non-inverted version of the signal
(this is not possible in pure QDI circuits).

The high to low converter is shown in Figure 7.Re↓ is
sensed in theen stack andRe↑ is sensed in theRf and Rt

stacks. The short circuit found in the conventional converter
is avoided by guarding the stacks withLf and Lt and their
inverted versions. This only leaves the short circuit caused by
the weak feedback that is common to all state holding gates.
We can mitigate the impact of the weak feedback by adding
a weak series PMOS forR e in en’s feedback andRe in Rf

and Rt’s feedback. An example of this is shown in the pull
up feedback for en. WhenR e goes toVDDL, andL f /L t

are high, the bottom transistor partially turns on. At the same
time, the top weak PMOS partially turns off which reduces the
weak short circuit current. The transistors marked with aS are
made strong by using a low threshold voltage transistor and
oversizing it. The low to high converter is similar as shown
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in Figure 8.

Fig. 8. A pipelined low voltage to high voltage dual rail converter. The pull
up feedback on the right stack is explicitly shown.

B. DVHB Circuit Template

Simply scaling the voltage in an asynchronous circuit will
increase both its cycle time and latency. The latency can be
kept constant by keeping the logic in the forward path in the
high voltage domain and moving only the logic in the return
path to the low voltage domain. In other words, the data rail
stacks useVDD and the enable/acknowledge logic usesVDDL.
A voltage conversion is needed whenever the data rail logic
uses a signal from the enable logic.

To minimize the forward latency, we start with a PCEHB
reshuffling:

*[[Re]; en↑; [Lf −→ Rf ↑[]Lt −→ Rt↑];Le↓;
[¬Re]; en↓;Rf ↓,Rt↓; [¬Lf ∧ ¬Lt];Le↑]

Both theRe andLe signals are in the low voltage domain. The
PCEHB reshuffling allows us to remove these signals from the
data rails and do the voltage conversion in the logic foren.
Similar to the voltage converters in the previous subsection,
we need to find a high voltage signal to use as a guard in the
en logic. The only choice is to use the validity of the data rails,
Rv . The dual voltage half buffer circuit (DVHB) is depicted
in Figure 9. The shaded logic is in the low voltage domain.
The voltage conversion occurs in theen0 and en stacks. We
use the same technique as before to lessen the weak feedback
during the conversion.

Although the shaded logic seems to be a small part of the
circuit, this logic switches every cycle compared to the data
rails where only one rail switches per cycle. In addition, by
makingLe andRe low voltage we have reduced the switching
in the channels where wires tend to be longer and more
capacitive. Moreover, theen stack, en0 stack and the data
rails only have one series PMOS transistor which helps to limit
their output capacitance (the weak feedback PMOS transistors

Fig. 9. The DVHB circuit template. The shaded logic is in a lowervoltage
domain.

are minimum size and do not contribute greatly to the output
capacitance).

IV. T WO PHASE STATIC SWITCHING NETWORKS

Two phase handshake protocols are often suggested to
reduce power and increase frequency in asynchronous circuits.
The main difficulty with two phase protocols is that they are
very inefficient in performing logic functions, as has been
noted by others [8]. However, a simple two phase buffer with
similar characteristics to a WCHB (two transition forward
latency and ten or less transition cycle time) would be useful in
two specific applications. The first, and most obvious, is global
communication. The second application is static switching
networks.

Static switching networks are especially important in FP-
GAs [12]. Logic clusters in FPGAs are surrounded by stat-
ically configured switching networks. In asynchronous FP-
GAs, these statically configured switching networks are built
up out of the switches shown in Figure 10. Programming
bits are set to select which set of input data rails are the
input to the WCHB via the MUX. The output data rails
of the WCHB fanout to other switches and the associated
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Fig. 10. A statically programmed n-way switch.

enables/acknowledges must be combined via a programmable
c-element (depicted as pc in the diagram). We can replace
the WCHB with a two phase buffer and the switch will work
without any modification.

A. HC2PFB Buffer

A simple dataless two phase buffer can be represented by
the following HSE:

*[[L = Re];R := L;Le := ¬R]

The resulting circuit is a c-element and an inverter, shown in
Figure 11. The circuit gets more complicated when you add
data. We will assume a simple protocol where sending a zero
means a transition on the false rail and sending a one means
a transition on the true rail (although the resulting buffer can
support the LEDR [1] protocol as well). The problem is that
Re changes each cycle and each data rail needs to know which
sense ofRe to wait for. We can introduce a state variable to
track this, but it would be expensive to manage it. A better
solution is for each rail to wait for the XOR of the opposite
rail with Re, instead ofRe. The idea is that if the opposite
rail causedRe to change then the output of the XOR will be
unchanged since both of its inputs have switched (in reality
the output will switch and then switch back). The HSE for the
two phase data buffer is:

*[[Lf = XOR(Rt ,Re) −→ Rf := Lf

[]Lt = XOR(Rf ,Re) −→ Rt := Lt]

Le := XOR(Rf ,Rt)]

Fig. 11. The HC2PFB buffer: dataless (left) and with data (right).

The HC2PFB (half cycle two phase full buffer) buffer is
shown in Figure 11. The HC2PFB has a forward latency of two
transitions and a cycle time of seven transitions. The pair of
XOR gates that processRe can be folded into the c-elements,
but this makes the data rails more complex and increases the
latency. The HC2PFB is45% larger than the WCHB, however,
since the HC2PFB has such a short cycle time the XOR gates
can be undersized to reduce the area penalty. In addition, each
HC2PFB can replace two stages of WCHBs because it can
support twice the number of transitions in a cycle. The slack
will remain the same because we are replacing two half buffers
with a full buffer. When used in this fashion, the HC2PFB
equivalent circuit is15% smaller than the WCHB. This is an
important result because the four-to-two and two-to-four phase
converters are significantly larger than the buffer.

B. 4:2 Converter

Consider the following HSE for the four-to-two converter:

*[[Lf −→ Rf := XOR(Rt , en)
[]Lt −→ Rt := XOR(Rf , en)];Le↓;
[¬Lf ∧ ¬Lt]; en := Re ;Le↑]

When one of the input data rails goes high, the corresponding
output data rail needs to toggle which is equivalent to setting
the rail to the XOR of the opposite rail andRe . However,
usingRe directly can cause an oscillation on the data rails. For
example, assumeLf ↑ causesRf ↑ which in turn causesRe↓.
If Re↓ arrives beforeLf ↓, then Rf ↓ might fire. To prevent
this scenario, we introduceen to store the value ofRe at the
beginning of the cycle.

Fig. 12. A four-to-two phase converter converter.
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The four-to-two phase converter is shown in Figure 12. The
XOR gates that generateenf andent are equivalent to the ones
used in the buffer. Output validity is detected through a pair
of XOR gates and an and gate. The assignments in the HSE
have been implemented with latches. The timing constraints
of the latches can be accounted for by the handshake and the
half cycle timing assumption, with the exception of the hold
time on enf /ent for the Rf /Rt nodes. This hold time is set
by the leftmost pair of XOR gates. Note, this is the equivalent
of a three transition cutoff path in QDI circuits (see Guideline
1 at the end of Section 2). The solution is to implement these
XORs as XNORs followed by an inverter. The latency of the
converter is three transitions in the worst case because of the
need to invertLf andLt . The four-to-two phase converter is
about3x larger than a WCHB.

C. 2:4 Converter

The following is the HSE for the two-to-four converter:

*[[Re ∧ Lf = XOR(Rt , en) −→ Rf ↑
[]Re ∧ Lt = XOR(Rf , en) −→ Rt↑];
en := ¬en;Le := en;
[¬Re];Rf ↓,Rt↓]

Fig. 13. A two-to-four phase converter.

It is difficult to generate the toggle ofen based on the values
of Rf andRt alone. They don’t contain any information about
which sense ofLf and Lt caused them to fire. To remedy
this, we implement each data rail with two state holding gates
followed by a NAND gate, as shown in Figure 13. (This
technique is sometimes used in QDI circuits to break up the
load in a complicated pull down stack.) One node fires when
the transition is caused byLf ↑ or Lt↑ and the other fires when
the transition is caused byLf ↓ or Lt↓. With this information,
we generate a pair of signals,en0 anden1, which act like two
phase data rails. Similar to the buffer,Le can be set based on
the XOR of these signals. This converter also has a forward

latency of three transitions due to inverting the input data rails.
It is roughly 3.25x larger than the WCHB circuit.

V. EVALUATION SETUP

All simulations are done with HSpice using model files
for a 65 nm process. Wire capacitances are approximated by
adding a4fF capacitance to each output node. This amount of
capacitance is typical of short wires based on our observations
of extracted layout in this technology. Gates are sized to have
the drive strength of an inverter with its pmos width set to
20 lambda units and its nmos width set to 10 lambda units
(lambda is defined as half the minimum gate length). All power
and energy numbers are based on total dissipated power.

Name Inputs Outputs Description
and2 2 1 and gate
or2 2 1 or gate
xor2 2 1 exclusive or
fa 3 2 full adder

benc 3 2 booth encoder
TABLE II

BENCHMARK CIRCUITS USED IN EVALUATION. NOTE: THESE ARE

DUAL -RAIL PIPELINED CIRCUITS.

The benchmark circuits used in our evaluations are listed in
Table II. Latency and cycle time numbers reported represent
the worst case. We measure the worst case by switching the
data rail with the slower stack. For example, the true rail in
the and2 circuit has one extra series nmos transistor, therefore
we exercise that stack in its simulations. The area reported is
the total transistor area of a circuit (the sum ofwidth∗ length

of each transistor).

VI. RESULTS

A. HCHB Template
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Fig. 14. Forward latency of benchmark circuits across PCHB, PCEHB, and
HCHB templates.

The latency of the five benchmark circuits for the PCHB,
PCEHB, and HCHB templates are shown in Figure 14. On
average, the latency of the PCEHB is6% less than the other
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circuit templates. The PCEHB is generally lower latency be-
causeRe andLe are combined in a separate c-element, rather
than in the data rail stacks. The HCHB has a similar latency to
the PCHB except and2 and or2 circuits where it’s6% slower.
The pull down stacks in these circuits were augmented to wait
for input validity, which makes them slower.
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Fig. 15. Total transistor area of benchmark circuits across PCHB, PCEHB,
and HCHB templates.

Figure 15 shows a comparison of the total transistor area
across the benchmark circuits. An interesting result is that
the PCEHB is slightly smaller than the PCHB. Once again,
this is attributed to its simpler data rail transistor stacks. The
HCHB is about15% smaller than the PCEHB template and
20% smaller than the PCHB template on average. This is a
result of the simplified detection of input neutrality possible
with the half cycle timing assumption.
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Fig. 16. Frequency of benchmark circuits across PCHB, PCEHB, and HCHB
templates.

The HCHB template is consistently higher frequency than
the other templates across all five benchmark circuits, as seen
in Figure 16. On average, the HCHB is7% higher frequency
than the PCHB. The PCEHB has an18 transition cycle time
and the HCHB and PCHB both have a14 transition cycle
time. However, the HCHB is higher frequency because many
of its transitions, especially those that detect input neutrality,

are simpler. This suggests that HCHB can use even less area
because we can use smaller transistors for these fast transitions
to match the frequency of the PCHB.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

an
d2 or
2

xo
r2 fa

be
nc

A
V

G

E
ne

rg
y 

P
er

 O
pe

ra
tio

n 
(p

J)

pchb
pcehb
hchb

Fig. 17. Energy per operation of benchmark circuits across PCHB, PCEHB,
and HCHB templates.

The energy per operation (or per cycle) of the benchmark
circuits is reported in Figure 17. The HCHB template consis-
tently uses less energy than the PCHB and PCEHB templates
across all five benchmarks. The HCHB template consumes
32% and 36% less energy on average than the PCHB and
PCEHB templates respectively. This is a great result because it
is accompanied by significant area savings, a slight frequency
improvement, and a negligible latency penalty.

B. Voltage Scaling
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Fig. 18. Average dynamic slack of lowVDD and DVHB templates across
benchmark circuits.

The average dynamic slack of lowVDD and DVHB tem-
plates across benchmark circuits is shown in Figure 18. The
dynamic slack is calculated as twice the forward latency over
the cycle time (for half buffers). The dynamic slack remains
relatively constant forVDD scaling. In the DVHB, the forward
latency remains constant while the cycle time increases which
results in a decreasing dynamic slack. The throughput-optimal
number of tokens in a pipeline is proportional to the dynamic
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slack. This implies that the throughput of loops with a less
than optimal number of tokens will improve with the DVHB
template relative to simply scalingVDD. In such loops, the
voltage of the enable logic can be scaled somewhat without
impacting performance.
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Fig. 19. Average power across benchmark circuits for lowVDD and DVHB
templates.

Figure 19 displays the average power across benchmark
circuits for low VDD and DVHB templates. TheVDD scaled
circuit exhibits the expected cubic decrease in power with
supply voltage. The DVHB template doesn’t scale as well as
pureVDD scaling. The power doesn’t scale as well because its
data rails, forward path logic, and voltage converters remain
in the high voltage domain.

C. Two Phase Static Switching

In asynchronous FPGAs, programmable routing between
logic clusters is made up of stages of the static switch shown
in Figure 10. In this experiment, we make this routing use two
phase logic by replacing the WCHB with an HC2PFB. In fact,
we replace two stages of the WCHB switch with one stage of
the HC2PFB switch. This keeps the slack, latency, area, and
cycle time roughly constant between the two implementations.
There is some overhead incurred from the 4:2 and 2:4 phase
converters at the input and output of the routing logic. We
vary the number of two phase pipeline stages between these
converters and measure the area impact and energy reduction
over the original WCHB version (where no converters are
needed). In addition, we vary the width of the individual
switches.

Figure 20 shows the energy reduction in the two phase
static switch with increasing switch width. As the switch width
increases, more static muxing and programmable c-elements
are need to build the switch. As a result, more capacitance
is switching each cycle. Intuitively, one would think that the
maximum energy reduction would be50%. However, each two
phase buffer replaces two four phase buffers. Even in this
configuration, the two phase buffer is higher frequency. At
a switch width of16 there is over a52% reduction in energy.
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Fig. 21. Area overhead as the number of stages increase.

The main drawback to using the two phase switch is the high
cost of converting between two phase and four phase protocols.
The two phase buffer is about15% smaller than the two four
phase buffers it replaces. The four-to-two phase converter is
3x larger than a WCHB and the two-to-four phase converter
is 3.25x larger than a WCHB. Figure 21 tracks the area
overhead of 20 stages of switches with varying widths. In an
asynchronous FPGA, neighboring logic clusters are typically
separated by6-8 stages of 4-wide switches. This would put the
area overhead at15-20%. If the FPGA has direct connections
between neighboring logic clusters (a common optimization)
then the minimum distance between two logic clusters that use
the routing network would be10-12 stages. In this case, the
area overhead would drop to about6-10%. In addition, some
of inputs are actually copies. The number of input converters
can be reduced by pushing this copying into the two phase
logic.

VII. R ELATED WORK

Optimizing circuit templates by applying timing assump-
tions has been explored in previous work. In [9], [11], an
additional wire is added to the data channel to share validity
and neutrality information between stages. A similar technique
can be applied to the HCHB to reduce logic for neutrality

Appears in Proc. ASYNC 2009.



detection. We have chosen not to add an additional wire to
the data channels for two reasons. One, successive stages of
logic are often not immediately adjacent to one another. When
they aren’t, channels are longer and the energy consumed in
switching them can account for over30% of the total energy
for a stage. An additional wire would increase the switching
in the channels by50%. Two, in an FPGA this wire would
have to be statically routed with the rest of the wires in a
channel. In this case, the additional muxing required would
overshadow any potential area savings.

A set of efficient protocol converters are presented in [8].
Similar to this work, four phase logic is used for computation
and two phase logic is used for communication. A major
difference from our work is that the four phase logic only
supports a single data token at a time. The 2:4 and 4:2
converters share control logic. The input converter will not
receive another token until the current token has left the output
converter. In addition, more aggressive timing assumptions are
used to generate clock pulses used in flops.

A two phase buffer for asynchronous interconnect is pro-
posed in [10]. The latency of that buffer is roughly ten
transitions which five times larger than the buffer presented
in this work. Again, more aggressive timing assumptions are
used to generate clock pulses that trigger flops for the data
rails and the acknowledge.

VIII. F UTURE WORK

The circuits in this paper were design with the intention
of using them to reduce energy in asynchronous FPGAs.
The routing logic in an asynchronous FPGA is larger and
more power hungry than a typical synchronous FPGA for two
reasons. One, the capacitance in the wires is switched four
times per cycle with four phase protocols. Two, the copying
that is ubiquitous in the routing logic requires programmable
c-elements to combine the associated acknowledge/enable
signals. As a result, the routing logic can easily account for
over50% of the entire chip area. Using the methods described
in this paper to switch to a two phase protocol has the potential
to yield rather large power savings.

The voltage scaling templates described in this paper also
have the potential to save power in an FPGA. User designs are
mapped to an FPGA through a chain of synthesis, place, and
route tools. The resulting design contains many reconvergent
paths and latency limited loops. These scenarios allow for
voltage scaling with minimal impact on performance. We are
currently in the process of designing an FPGA utilizing the
circuits discussed in this paper.

IX. CONCLUSIONS

We have presented a class of circuits that are derived by
starting with quasi delay-insensitive circuits and applying a
conservative timing assumption, namely the half cycle tim-
ing assumption. We refer to these as relaxed quasi delay-
insensitive circuits. We used these circuits to help reduce

power consumption in a few ways. First, we developed the
half cycle half buffer (HCHB) circuit template that reduces the
amount logic needed to generate enable/acknowledge signals.
The HCHB template reduces area by15% and energy by32%
on average across our benchmark circuits. Second, we showed
how to fold voltage converters into the HCHB buffer. We also
proposed the dual voltage half buffer (DVHB) to allow voltage
scaling on the enable/acknowledge logic (return path) while
keeping the data logic (forward path) in a high voltage domain
to maintain a constant forward latency. Third, we presented a
two phase buffer for use in global communication and static
switching networks. This buffer was shown to reduce energy
in static switches by over50%. The overhead of a four-way
switch over ten stages was shown to be about10%. This
overhead results from the four-to-two and two-to-four phase
converters, and it decreases as more stages are added.

REFERENCES

[1] Mark E. Dean, Ted E. Williams, and David L. Dill. Efficient self-timing
with level-encoded 2-phase dual-rail (ledr). InProceedings of the 1991
University of California/Santa Cruz conference on Advanced research
in VLSI, pages 55–70, Cambridge, MA, USA, 1991. MIT Press.

[2] Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson. Power
considerations in the design of the alpha 21264 microprocessor. In35th
Design Automation Conference, pages 726–731, 1998.

[3] Mark Horowitz. Scaling, power and the future of cmos. InVLSID ’07:
Proceedings of the 20th International Conference on VLSI Design held
jointly with 6th International Conference, page 23, Washington, DC,
USA, 2007. IEEE Computer Society.

[4] Andrew Matthew Lines. Pipelined asynchronous circuits. Master’s
thesis, California Institute of Technology, 1996.

[5] R. Manohar and M. Nystrom. Implications of voltage scaling in
asynchronous architectures. Technical report, Cornell Computer Systems
Lab CSL-TR-2001-1013, April 2001.

[6] Alain J. Martin. Compiling communicating processes into delay-
insensitive vlsi circuits.Distributed Computing, 1(4), 1986.

[7] Alain J. Martin. Programming in vlsi: from communicating processes
to delay-insensitive circuits. pages 1–64, 1990.

[8] Amitava Mitra, William F. McLaughlin, and Steven M. Nowick. Effi-
cient asynchronous protocol converters for two-phase delay-insensitive
global communication. InASYNC ’07: Proceedings of the 13th IEEE
International Symposium on Asynchronous Circuits and Systems, pages
186–195, Washington, DC, USA, 2007. IEEE Computer Society.

[9] Recep O. Ozdag and Peter A. Beerel. High-speed qdi asynchronous
pipelines. InASYNC ’02: Proceedings of the 8th International Sympo-
sium on Asynchronus Circuits and Systems, page 13, Washington, DC,
USA, 2002. IEEE Computer Society.

[10] Bradley R. Quinton, Mark R. Greenstreet, and Steven J. E. Wilton.
Practical asynchronous interconnect network design.IEEE Transactions
Very Large Scale Integration Systems, 16(5):579–588, 2008.

[11] Montek Singh and Steven M. Nowick. High-throughput asynchronous
pipelines for fine-grain dynamic datapaths. InASYNC ’00: Proceedings
of the 6th International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, page 198, Washington, DC, USA, 2000.
IEEE Computer Society.

[12] John Teifel and Rajit Manohar. Highly pipelined asynchronous fpgas.
In FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays, pages 133–142, New
York, NY, USA, 2004. ACM.

[13] John Teifel, Rajit Manohar, David Fang, Clint Kelly, and David Bier-
mann. Energy-efficient pipelines. InASYNC ’02: Proceedings of the 8th
International Symposium on Asynchronus Circuits and Systems, page 23,
Washington, DC, USA, 2002. IEEE Computer Society.

Appears in Proc. ASYNC 2009.




