Static Tokens: Using Dataflow to Automate Concurrent Pipeline Synthesis

John Teifel and Rajit Manohar
Computer Systems Laboratory
Cornell University
Ithaca, NY 14853, U.S.A.

Abstract [Sequential CHP Specificatior}
. lexer/parser
We describe a new intermediate compiler representation, '
static token form, that is suitable for dataflow-style synthe- [Abstract Syntax Tree |
sis of high-level asynchronous specifications. Static token AST transformations

form transforms variables into tokens, and simplifies the
pipelining of asynchronous computations according to their [
dataflow graphs. We present a compiler framework that au- | sequential compiler analysis
tomates this synthesis method, and show how it can be ap- [Sequential Control Flow Grap]‘n

plied to pipelined asynchronous FPGA architectures.

Canonical Sequential CHP]

concurrent dataflow decomposition
y

[Concurrent Dataflow Graph]
1. Introduction technology mapping
[Asynchronous Pipeline Stage]s

The formal synthesis method of asynchronous design
transforms a high-level sequential hardware specification i o _
into a system of concurrent processes. How the sequen- Figure 1. Concurrent pipeline synthesis steps.
tial specification is partitioned into these processes depends
on the particular design point (i.e., area, energy, latency, . o
throughput, etc.) desired for the resulting system. This 18]) fail to produce such pipelines because they cannot take
decomposition procedure is difficult to do optimally for advantage of fine-grain concurrency that is hidden in high-
more than one relevant design parameter and in most full-'€ve! sequential program descriptions. Similarly, teta-
custom asynchronous designs (e.g., [12]) it is largely donedrven decompositiomethod [19], which projects each
manually to maintain tight control over performance. In high-level variable onto its own process, does not produce
asynchronous systems that do not need full-custom perfor-Processes thatare simple enough to be directly implemented
mance, however, automated process decomposition tool®" @ PiPelined asynchronous FPGA architecture.
that reduce design time are more important than a hand- In contrast, our compiler generates concurrent processes
optimized process decomposition. In this paper, we de-Using only seven types of simple pipeline templates, making
scribe a hardware compiler that uses sequential compilerit suitable for both FPGA and custom logic synthesis. Our
analyses to automatically decompose a sequential hardwaréain insight was to treat variable definitions as producers
description into highly concurrent pipelined circuits. of data tokens and uses of variables as consumers of data

Recent advances in the design of pipelined asynchronougokens. The compiler, however, mustatically guarantee
FPGA architectures [15, 16] motivated the development of that token producers and token consumers will cooperate to
this hardware compiler. These asynchronous FPGAs havecorrectly implement the original sequential program.
simple fine-grain programmable pipeline stages that can be Figure 1 shows the pipeline synthesis steps automated
configured to compute functions, copy tokens, or to merge by our compiler. The front-end of the compiler accepts
and split token streams. To use these FPGAs efficiently, wehigh-level sequential logic specifications written in the CHP
needed a new decomposition method that produced simplénardware description language, whose syntax is described
fine-grain processes from high-level logic specifications. in Appendix A. Section 2 describes the Abstract Syntax

Previous syntax-directed synthesis methods (e.g., [3, 5,Tree (AST) transformations that are necessary to convert

e g := selection(. . .);
[g=0—.

I] G1—>

0 0 g=1—.

0 Gy — ... i
lg=n-1—

!]

Figure 2. Canonical CHP form: original selection (left)
and selection with integer guard expressions (right).

a parsed CHP program into the canonical CHP form. In
Section 3, we introduce the Static Token (ST) intermediate
compiler representation to analyze the sequential behavio
of a canonical CHP program and to produce an optimized
sequential control flow graph. Using concurrent dataflow
decomposition, in Section 4, we transform the control flow
graph into a concurrent dataflow graph. The concurrent

dataflow graph defines a set of concurrent hardware pro-

cesses that is functionally equivalent to the original sequen-
tial CHP specification and can be directly mapped to an
asynchronous FPGA or to custom circuits.

The remaining sections of this paper are organized as fol-

lows. In Section 5, we present correctness conditions when

concurrent dataflow decomposition can be safely applied.
Section 6 discusses the implementation of the compiler an
our experience in using it to synthesize logic for pipelined
asynchronous FPGAs. We compare related work in Sec-
tion 7 and conclude in Section 8. Common compiler termi-
nology is defined in Appendix B.

2. Canonical CHP Form

To simplify the back-end steps of our pipeline compiler,
we convert the input CHP specification irtanonicalCHP
form. Canonical CHP form is a subset of CHP having the
following restrictions: guard expressions are of the form
“v = 4,” wherewv is an integer variable andis a constant;
all loops are either infinite repetitions (i.e., the outermost
loop), or contain only a single guard of the form= 1;

I

¢

Syntactic AST transformations to remove multiple channel
actions are described in Appendix C. Note that canonical
CHP allows an additional channel send action to appear in
the initialization part of the main program loop.

3. Static Token Form

The goal of the sequential analysis phase of our com-
piler is to transform a canonical CHP program into a form
that we call thestatic token(ST) form. ST form is an ex-
tension of the Static Single Information (SSI) intermediate
compiler representation [2], which in turn is a generaliza-
tion of the Static Single Assignment (SSA) form [4]. The
important properties of SSA and SSI form can be captured
by examining definition/use (def-use) chains in a compiler.
In what follows, we examine the properties of these repre-
sentations by examining the control flow graph (CFG) of
the CHP program.

In SSA form, each variable use in the program has a sin-
gle reaching definition. If there are multiple reaching defini-
tions (at merge points in the control-flow graph), then these
are combined into a single definition usingfunctions.
Also, each definition of a variable is given a fresh name,
and uses are appropriately updated to reflect the appropriate
(single) reaching definition.

SSI form was introduced to improve backward flow anal-
sis, and to augment dataflow information using partial path
information. In SSI form, if a definition at program point
reaches two uses at pointandz, then either all paths from
z to y containz or all paths fromz to z containy. State-
ments of the formzy, 21 := o(z) are used to create mul-
tiple copies of a single variable, allowing the transformed
program to satisfy the SSI condition.

The concurrency-introducing transformation that we
would like to apply to convert a sequential CHP program
into a fine-grained concurrent version psojection [10].

To enable the application of projection, one of the stan-
dard sequential transformations applied is to replace assign-
ment statements/:= ¢” with communication actions, i.e.,
(X!e || X?v) [7]. This allows us to think of variables and
values as tokens that are received and sent on channels, con-
verting data dependencies into channels. The earliest point

every channel action appears at most once in the body of dn the program where the communication acti&he can

CHP process. The first two requirements are a technicality,
and are used to simplify the presentation.

All guard expressions in canonical CHP form must be
rewritten to contain only integer values as shown in the
right part of Figure 2, whereelection is a function that
computes the guard variabjecorresponding to the match-
ing guard expression in the original CHP program. Unique
channel actions imply that only a single channel action per
port can appear in the main loop of a sequential program
(e.g.,x[Z7x; Z!2] is allowed, but no& [A?z; Z!z; Z!2]).

be placed is the point at which the variables used are
defined. Therefore, one can think of definition points as
generating data tokens that are transformed by expression-
computation blocks, and finally consumed by the uses of
the expression. The goal of static token form is to enable
this interpretation of variable definitions and uses.

Static token form keeps th¢ and ¢ functions of SSI
form, except it re-interprets their execution as well as makes
them truly executable. The statement= ¢(xy, . .., z,—1)
is now replaced withe := ¢,4(xp,...,z,—1) Whereg is

an integer-valued variable. Execution of this statement is The statementy, ..., z, 1 := ¢;1(x) is placed at the
equivalent tox := z,, thereby making the condition un- split point in the CFG when the branches of the selection

der which each argument af is used explicit. ¢, func- contain uses of, or if the branches define andz is live
tions are similar tqyuarded¢ functions[1]. The statement at the split point. More precisely, we inserpa' function
2oy, Tn—1 = o(z) is replaced withz, ..., z,—1 = for each variable: € livein(S) N (use(S) U (liveout(S) N

ng_l(x) where g is an integer-valued variable. Execution def(S))). If a ¢! node is inserted at a split point but

of this statement is equivalent tg := z, thereby making s not live on exit from the selection, thesiz) nodes are

this a conditional definition. Botk and$~! uncondition- placed at the end of each branch of the selectiani# not
ally use the variablg. used in that branch. More precisely, we insgit) nodes at
ST form introduces two new statemerg&g) andl (z). the end of the branch; when ap~! was placed at the split,

Statemens(z) usesz without defining any new variable. and whern: & (liveout(S) U use(S;)).
This statement is used to consume any unused definitions. Variables are renamed in the obvious way. If there is a
I (z) is a statement that asserts that the initial value f use of a variable in a branch of the selection, it is renamed to
the constant. This statement is required to initialize vari- the appropriate version that was generated bysthefunc-
ables at reset and to initialize guard variables in repetition tion. Uses of a variable after a selection use the variable
statements. generated with the-function at the merge point, if appli-
Since ST form is generated from a CHP program, we arecable. These rules are the same as the ones used by Ana-
guaranteed that the resulting control flow graph is reducible, nian [2]. After renaming, we have the following property
which simplifies the placement of the four constructs intro- that is crucial to the static token forrgiven a variable, the
duced by ST form. Given the restricted nature of canonical control-flow condition that determines when it is defined is
CHP, the only non-trivial control flow graph configurations identical to the control-flow condition that determines when
possible are shown in Figure 3, where the dashed boxes corit is used. It is precisely this condition that allows us to
respond to control flow split and merge points. transform variables into tokens.

Repetitions. Repetitions pose a challenge because their
CFG contains nodes that are both splits and merges, they
have loop-carried dependencies, and because the guard vari-
able introduces a special situation with respegt-fanction
placement. The head of the loop can contain hothnd

¢~ ! functions, the body can contaisr! functions at the

end, and the tail can contaifhffunctions. To illustrate this,

L tail consider the repetition
[g=0— S z = init_z(...);
fg=1—5 g = init_g(...);
%]g =n—1— 5.1 x[g=1— S;z:=f(z,...);9 := h(...)];

Figure 3. Possible CFG Configurations. The variablez could be used multiple times. The problem

is that each use of occurs under a different control-flow
condition. Using explicitif /then/goto control-flow no-
tation, we would like to write the repetition as

Given a CFG nodé, the setlivein(S) is the set of vari-
ables that are live on entry to the nod@jeout(S) is the
set of variables live on exit from the nodese(S) is the
set of variables used by the node, aiif(S) is the set of

variables defined by the node. We assume that any dead Ty = init_z(...);
code has already been eliminated by a standard compiler go = init_g(...);
optimization pass. if g9 =0 then goto T;

. . L: = ¢y ;
Selections.The statement := ¢, (1, . .., 2,_1) is placed ngx QZSQIE(O:; xl)’). — (),
at merge points in the CFG wheris live at the merge point, AL

.) L if ¢y =1 then goto IL;
and there are multiple reaching definitions ..., z,_1

through each distinct edge in the merge. More precisely, we T : 13 := ¢gy(70, 71);

insert ap function for all variables: € liveout(S)Ndef (S)
where S is the selection statement (excluding the guard but we are confronted with the problem of choosing ¢he
variableg). subscript at program poirt. We would like to simply use

g1, except for the problem of the initial value gf. We
resolve this by using thk, statement which, by definition,
solves precisely this problem. We can now yseas the

subscript for thep-function. The next issue is the fact that
bothzy andz; have definition conditions that do not match
their use condition. We resolve this by the introduction of

¢~ ! functions at program pointd andB as follows:

2o = init_x(...);
go = init_g(...);
H: ho,hi = ¢y (20);
if go =0 then goto T;

lo(g1);
L: 2 :=¢g (h1, ha);
Sixp = f(932,---);91 = h(-~-);

B: hg, hy = ¢;11(x1);
if ¢y =1 then goto L;

T: z3:= ¢go(h07 h3);

In general, the statement := ¢, (2, 21) is placed
at program pointL, in the head of the repetition CFG,
when the repetition contains usesmofind z is live at L.
More precisely, we insert & function for all variables
z € livein(R) N use(R) whereR is the repetition state-
ment (excluding the guard variabjg.

The statement := ¢y, (20, 21) iS placed at program
point T, in the tail of the repetition CFG, whenis live at
T and the repetition contains a reaching definitigrfrom
the head of the CFG and a reaching definitignfrom the
body of the CFG. More precisely, we inserpdunction for
all variablesz € liveout(R) N def (R).

The statementy, z; = ¢;11(x) is placed at program
point B, in the body of the repetition CFG, when ¢a
function for z was placed at program poinis or 7. If
x & liveout(R), we insert anif ¢g; = 0 then s(zy)”
statement after the—* function. Similarly, ifz ¢ use(R)
we insert anif ¢; = 1 then s(z;)” statement after the
¢~ function.

The statementy, z; = gb;ol(x) is placed at program
point H, in the head of the repetition CFG, wheng¢a
function for z was placed at program poinfs or 7. If
x & liveout(R), we insert anif gy = 0 then s(zy)”
statement after the—* function. Similarly, ifz ¢ use(R)
we insert anif ¢go = 1 then s(z;)” statement after the
¢~ function.

Compiler Analyses. Transforming a canonical CHP pro-

and repetition statements. For programs with nested selec-
tion and repetition statements, it is necessary to iterate over
these first two passes. This is required because the guard
variables of the innep and¢~! functions may change the
liveness analysis of the outer statements and consequently
require the insertion of additionaland¢—! functions. Fi-
nally, all variables are renamed to create a valid ST program
representation.

4. Concurrent Dataflow Decomposition

A concurrent dataflovdecomposition maps a sequential
CHP program in ST form onto a concurrent dataflow graph.
Since all variable definitions and variable uses have match-
ing control-flow conditions in ST form, concurrent dataflow
decomposition is a simple one-to-one mapping of program
actions onto concurrent dataflow nodes. This decomposi-
tion maps variable definitions in the sequential program to
asynchronous token producers in the concurrent graph and
similarly, variable uses to asynchronous token consumers.
The directed edges of the resulting dataflow graph repre-
sent the flow of tokens in the concurrent decomposition,
which correspond to asynchronous channels in a physical
pipeline implementation. Each dataflow graph node repre-
sents a concurrent asynchronous pipeline stage and is one
of seven simple process types.

The seven types of concurrent dataflow nodes are shown
in Figure 4 and their functionality is described below:

Copy = *[A%a; Zyla, ..., Z,_1!a]
Function =*[Ag?ag, ..., An_17an-1; Z!f (ag, ..., apn-1)]
Split =*[C?¢, A%a;

[c=0— Zglal..0c=n—-1— Z,_1'all
Merge = *[C7c¢;

[c=0— Ap?al..lc=n—-1— A,_17al;

Zla]l
Source = *[ZV constant’]
Sink = *[A7a]
Initializer = a := " constant”; Zy'a, ..., Zn_1'a;

* [A?a; Z()!a, ceey anlla]

We note that each concurrent dataflow node is simple
enough to be implemented in a pipelined asynchronous
FPGA [15, 16], as well as with custom fine-grain pipelined
circuits. In addition to the seven dataflow nodes, there are
several pseudo dataflow nodes (nodes that are not actually
implemented in hardware) that serve as logical place hold-
ers in the dataflow graph and have no shapes surrounding

gram into ST form occurs during three compiler passes. their labels. Channel send€'() and channel receive€’(?)
First, a sequential control flow graph of the program is con- are pseudo dataflow nodes and are connection place holders
structed and a liveness analysis is performed to determingfor environment processes.

at what program points each variable is live. Seca@nand

We use the following steps to construct a concurrent

¢~ ! functions are inserted as necessary around selectiordataflow graph from a sequential program in ST form:

A? Ao? ... An1? A? B? D? A? B? D?

| | |
Copy [& | [bo | la | a | bo | a
SR B VavE *9 |

Zo! oo Znq! f f g f f g
c? A2 C? A¢? ... A,17?
\‘ i i - (@ X v zZl (b)) XtV z!
m Figure 5. Straight-line program: (a) initial dataflow graph
2 oz 21 o and (b) after removing extraneous copies.
’ A? # u? vz
Z! Zo! ... Znyq!

Figure 4. Concurrent dataflow nodes.

1. Map variables to copy nodes, functions and expres-
sions to function nodes) functions to merge nodes,
¢! functions to split nodes() actions to sink nodes,
constant values to source nodes, &fjdactions to ini-
tializer nodes.

2. Add directed edges to the graph, such that they fol-
low the flow of data tokens from variable definitions to
variable uses in the sequential program.

3. Replacedxtraneouscopy nodes with pseudo nodes if
the copy node has only one output edge.

4. For each initialization “channel send” action that ap- Figure 6. Program with selection statement.

pears before the main program loop, concatenate
an initializer node before its corresponding “channel g pave unigue names because each function “call” maps to
send” pseudo node. its own function node. Note that source nodes attached to
function nodes could be coalesced into the function node to
Straight-Line Programs. Consider the following straight- decrease the size of the resulting pipeline.

line program and its ST form: . . . :
e program and its ST fo Selections.Consider a program with selection statements

Straight = *[A?a; B?b; X!f(a,b); YIf(b,1); *[U?u: V7v: A?a: P21
e D?a;Z'g(a) 1] (u A v — B?x; C?¢; Flf(a,z, c)
Straight®T =*[A?ay; B?bo; Xf (ag, bo); Y!f (bo, 1); lelse— skip
D?ay;Z'g(a1)] 1; Zla: Xz]

Figure 5(a) shows its initial concurrent dataflow graph after and its corresponding ST form.
performing steps 1-2 of the concurrent dataflow decompo-

sition and Figure 5(b) shows the finished dataflow graph af- *L UTug; V7wo; A?ag; Pa;
ter the extraneous copies have been removed. Observe that 9o = sel(ug, w);

the sequential behavior between the first and second lines a1, G2 = %—ol(ao);

in the original program is completely removed when it is w23 = 0 (20);

mapped to a concurrent dataflow graph, since there is no [go =0 — B?xy; C7¢o; F!f (a1, 22, ¢o); S(21)
true data-dependence on the variablafter the program is lgo=1— s(a2)

converted to ST form. Functions (e.g.and g) are treated 1, 24 = @go(22, 23);

as macro expansions for expressions and are not required Zlag; Xay]

Figure 6 shows the concurrent dataflow graph for this pro-
gram. SinceZ ! qq is not data dependent on the actions inside
of the selection statement, it can execute concurrently with

the selection statement, whereas in the original sequential

program it executed after the selection statement.

Token Initializations. To illustrate how the token initializer
dataflow node is used, consider a program that uncondition-
ally toggles on which output channel it sends data.
Toggle = s := 0; X!1;

*[A7z; [-s — Xlzlls — Ylz];s:
ToggleST =1¢(s0); X!1;

x[A?xy; 71, T2 1= ¢;01(x0);
[so=0— X2y [5o=1— Ylan];

—|s]

So ‘= T8]

Note that initializer nodes are generated for bigtfs,) and
X!1 in the concurrent dataflow graph in Figure 7, and that
the ¢, function uses the “initialized” value of, instead

of sy directly.

Repetitions. A program that outputs the firat positive in-
teger numbers on channgl is listed below and its concur-
rent dataflow graph is shown in Figure 7.

Loop =*x[N7n; G?g;x := 0;
x[g=1—Xlz;z:=2+1;9 := (z < n)l]

Loop®T = *[N7?ng; G?go; 2 := 0;
H: a1 = ¢! (1);
if go =0 then s(a3);
na, ng == ¢y (no);
if go =0 then s(ng);
if go =0 then goto T

lo(g1);

L: T2 ‘= ¢gl ($47{E6);

ny = Gy, (13, N5);

Xlmpya =2 + 1501 := (211 < m);
B: 15,15 := qﬁ;ll(xl);

if g1 =0 then S(z5);

Ny, 5 1= Gyt (m);

if g1 =0 then s(ny);

if g1 =1 then goto L
T:1]

Observe thad,, functions at program point use the “ini-
tialized” value of g;, whereas the.zég—l1 functions at pro-
gram point B use g; directly. Also note that the node
23, T4 = ¢9*01(zo) is wasteful becausg, = 0, and so we
could move the “zero-source” fromy to z4 in the dataflow
graph. This inefficiency is due to the restrictive syntax of
CHP repetition statements andtdue to a deficiency in ST
form or concurrent dataflow decomposition. To prevent this
problem, we would need to modify the high-level CHP syn-
tax to allow the initialization of loop-carried variables at the
head of repetition statements, instead of in the main loop.

Figure 7. Toggle (left) and Loop (right) programs.

5. Correctness

In the previous section we have shown how a sequential
program can be automatically transformed into a regular set
of highly concurrent processes using concurrent dataflow
decomposition. It is clear that such a decomposition in-
creases the amount efack or number of pipeline stages,
on channels that interface with the program’s environment.
However, this can change the relative order of actions that
the environment observes on environment channels in the
sequential and concurrent implementations of the program
(although the absolute order of actions on individual chan-
nels is preserved). If a program can function correctly with
an arbitrary amount of slack on its environment channels,
then it islocally slack elastid9].

In this section we present two theorems validating the
correctness of concurrent dataflow decompositions. The
first uses the properties of slack elastic systems [9] to de-
scribe when this decomposition can be safely applied and
the second uses projection [10] to formally show that a con-
current dataflow graph is equivalent to its sequential ST pro-
gram. The interested reader is referred to [9, 10] for further
details on slack elasticity and projection.

Theorem 1 (correctness)Let P be a sequential program
and E be its environment, such tha&||E form a closed

system. Concurrent dataflow decomposition is safe to useSince this program is slack elastic, we assert that there is
on P if the following conditions are satisfied: (1) no shared sufficient non-zero slack on channéls, Y, and Y3 such
variables betweer® and E, (2) guards of selection state- that the above sequential program will not deadlock. Ap-
ments inP and E are syntactically mutually exclusive, and plying projection to the variables contained in the original

(3) no probed channels iR and E. selection branches, we obtain:

Proof: Condition 1 is stipulated so that we can use the re- *[G?90; Y 7y0; Y1, 42 = &' (40);

sults derived in [9] for slack elastic systems. Conditions 2 [go=0— Yilyillgo =1 — Yalyol;
and 3 are sufficient to apply Corollary 2 from [9], which Lgo = 0 — skipllgo = 1 — skip];
says thatP will be locally slack elastic. Sinc® is locally [go =0 — Y37y3llgo =1 — Ya?ynl:
slack elastic we can safely apply concurrent dataflow de- Ys = bgo (43, y2); Z'ya 1

composition toP.] | *CY1 7915 s := y1 + 1; Y3lys]

Theorem 1 holds for a large class of asynchronous sys-We remove the empty selection statement, merge thied
tems [9], including an entire microprocessor design [12] ¢~ functions with the remaining selections, and use con-
(except for an arbiter in the cache system and a probed chantrol duplication to copyyg.
nel in the exception unit). Such programs can always be

syntactically translated into ST form. *[G7g0: (Gilgo || G1791); (Galgo [| Ga7g2); Y703
. ' _ lgr =0 — w1 := yo; 1lnn

'I_'heorem 2 (gquwalence)lfasequentlal progrng satis- lgr =1 — 9o := yo; Yalypl;

fies the condlthns stqted in Theorem 1, then its concurrent [go =0 — Y3?ys:ys := 13

dataflow graph is equivalent tB. lgo =1 — Yoy ys := 1ol; Zlyy 1

Proof: (Sketch) SinceP satisfies the conditions in Theorem I*CY17y15 95 1= g1 + 1; Yslys]

1, we can transform it into ST form. We then use projec- Eing|ly, we project each variable into its own process.

tion [10] to construct a concurrent dataflow graph foas

follows: *[G7g0; Gilgo, G2!go]

| *LG1?g1, Y7905 [g1 = 0 — y1 == o5 Yily

lgr =1 — y2 := yo; Yalypll

| *[G27g2; [g2 = 0 — Y3?y3; ys := y3

2. Project out all selection branches i which is pos- lgo =1 — YoTuys; 94 := 9o1; Zlys]
sible because ST form guarantees that branches have | *CY1?y1; 93 := 31 + 1; Y3lys]
disjoint projection sets. LeP’ be the resulting set of
concurrent processes.

1. Add channel communication actions for all conditional
variables used in the¢ and¢—! functions.

Observe that this decomposed system is composed entirely
of concurrent dataflow nodes and is equivalent to the system

3. Apply control duplication[10] to obtain fresh copies generated by concurrent dataflow decomposition.
of each guard variable iR’.

4. Project each variable iR’ onto its own processes. 6. Implementation and Applications

5. Decompose initialization actions into their own pro-

cesses. The pipeline synthesis framework presented in this paper

has been implemented usif@yclone a type-safe “C-like”

The resulting processes consist only of concurrent dataflowprogramming language [8]. At the time of this writing, the
nodes and are equivalent foby projection. | core functionality of this hardware compiler, namely the
sequential compiler analysis and concurrent dataflow de-
composition for programs with selections, is complete and
*[G?g; Y7y, occupies approximately 3000 lines of code (not including

lg=0—y:=y+1lg=1— skipl; Zly] parsing and AST construction). Although we are continu-
ing work on implementing the analysis for internal repeti-
tions and multiple channel actions, we have a working CHP

Example: Consider the following simple program.

We first convert to ST form and then perform step 1.

*[G7g0; Y703 Y1, 92 := by, (%0); compiler that can automatically decompose relatively com-
[go=0— Yily1lgo =1 — Yalyol; plex sequential programs. Static token form and concur-
[go=0— Y17y1593 := 1 + 1; Y3lys rent dataflow decomposition are sufficiently general such
lgo=1— skip that other high-level languages could be easily adapted to
1; 090 =0 — Y37y3lgo =0 — Yo7ys]; substitute for CHP as the front-end language in our pipeline

Ys = bgo (U3, 42); Zlya] compiler.

Table 1. Technology mapping examples.
High-level pipeline synthesis FPGA technology mapping
Program CHP actions| ST actions| dataflow nodes| bit-level nodes*| logic blocks | throughput (MHz)
Fibonacci (32-bit) 8 8 5 160 96 668
Writeback Unit 17 25 19 63 54 658
Loop (4-bit) 6 15 16 48 32 189

*not including source, sink, and initializer nodes

Inputs from Global Interconnect 35 t t t
conditional—
30+ .
function/copy----
251
20 -
Local Interconnect FPGA
A nodes™ [
v 10
5 .
Local Interconnect
0% 20 %5 0

T

Outputs to Global Interconnect Figute 9. Asynchroncus FPGA scaling trends for imple-
menting N-input function, N-way conditional, and N-way

. copy (bit-level) dataflow nodes.
Figure 8. Concurrent dataflow graph representation of a Py ()

pipelined asynchronous FPGA logic block.

node, a two-way conditional split, a two-way conditional

We have found that this compiler generates dataflow Merge, and four-way output copy nodes. In addition, a logic
pipelines that are equivalent to dataflow pipelines that we block has built-in initializer nodes, constant sources, and
previously synthesized manually. However, the quality of sink nodes. Given the functionality of these pipelined asyn-
these pipelines is sometimes limited by the quality of the Se_chronous F'_DGA_ architectures, it is clear that they can im-
quential CHP, especially for programs with selection state- plement arbitrarily complex concurrent dataflow graphs..
ments. For example, consider the following two equivalent However, before a concurrent dataflow graph can be im-

programs: plemented on an asynchronous FPGA, the graph’s multi-
bit dataflow nodes must first be mapped to bit-level nodes
x[G?¢; A?a; B?b; *[G?g; A?a; B?b; that are equal in size to the FPGAs nodes. Observe that
[g=0—2z2:=a z:=-g A (a) in an asynchronous FPGA we get multi-bit source, sink,
lg=1—2:=1b Vg A (b); and initializer nodes essentially for free since they are built
1: 21z] AP into each bit-level logic block. This is not true for func-

Th the left to six datafl q tion, conditional, and copy nodes because they have limited
€ program on the left maps 1o six datallow NOGEs, oy ranoutin an FPGA node, but infinite fanin/fanout in a

whereas the equivalent program on the right requires Or”ydataflow node. Using Figure 9 we can estimate the number
one dataflow node. While an experienced designer may rec- of bit-level FPGA nodes required to implement an N-input
ognize that the selection statement in the left program is nOtfuncnon N-way conditional, or N-way copy dataflow node.
semantically necessary, our current compiler does not yet

Table 1 gives statistics for several asynchronous pro-

implement such semantic optimizations.) . o i

grams that were synthesized using our pipeline compiler
Asynchronous FPGAs. Recent work has investigated and technology mapped to an asynchronous FPBA.
pipelined asynchronous FPGA architectures [15, 16] thatbonacciis a straight-line program that sequentially gener-
efficiently implement programmable computation nodes ates all of the Fibonacci numbers that can be represented by
similar to those used in concurrent dataflow graphs. Fig- 32-bitintegers. Th&liniMIPS writeback unif10] is a more
ure 8 shows a concurrent dataflow graph representation otypical asynchronous hardware process that contains sev-
a typical pipelined asynchronous logic block used in these eral selection statements and state variables.LDo@ pro-
FPGA architectures. The asynchronous logic block usesgram is a 4-bit implementation of the concurrent dataflow
bit-level dual-rail channels and contains a 4-input function graph shown in Figure 7. Our target FPGA is similar to the

Table 2. Comparing asynchronous pipeline synthesis methods[fbta; b := —a; [-b — B!b[]b — X ?z; Yly(x)]].

| Decomposition Method Intermediate Form | Decomposed Processes |
. *[A%a; b := —a; *[A%a; b := —a; Bolb, B1!b]
Biﬁgﬁﬂion (19] [—b — Blb || %[Bo?b; [~b — skiplb — X?a; Yly(z)1]
06— X7z; Yly(2)1] | *[By2b; [—b — BlbIb — skip]]
*[A%a0; bo := —ao; *[A%a; Bo!=al
Concurrent bi, b = ¢y (bo); | *[Bo?b; By'b, B.!b]
Dataflow [bo =0 — Blb | *[B.?¢, By?b; [c = 0 — Blbllc =1 — By!b]]
Decomposition Dbo = 1 — X?x0; Yy(a0);(b2) | || *[B17b]
11 || *[X?z; Yy(z)]

logic block shown in Figure 8, contains heavily pipelined High-level language compilers for clocked hardware tra-
interconnects, and has a peak operating frequency of 70itionally limit the amount of pipelining in the resulting
MHz [16]. We automatically placed and routed the resulting system. A sequential program is usually synthesized as
technology-mapped dataflow graphs onto this FPGA archi- combinational logic, with pipelining only introduced across
tecture. Throughput values were obtained from a detailedloop iterations and at procedure calls (e.g., [6]). Since
switch-level asynchronous FPGA simulator, which used de- most synchronous systems are not slack elastic, it is not
lay values extracted from an asynchronous FPGA laid outsafe for them to introduce concurrency and pipelining as
in a typical TSMC 0.18m process. The Loop program is freely as our compiler does when it produces a concurrent
slower than the other two benchmarks because its through-dataflow graph. For example, the Handel-C synchronous
putis limited by the update computation fgr. compiler [14], which allows a programmer to use CSP [7]
concurrency and channel communication constructs, as-
sumes most of the parallelism is explicitly specified in the
source program instead of determined by the compiler. The
current dataflow graph when it is implemented with full- Handel-C compil_er also ma_kes circuit assumptions abqut
statement execution delays in terms of clock cycles and in-

CL.JStom circuits. For example, we can goa!esce copy nOde%roduces a high-levédelay statement, which waits for one
with other dataflow nodes to reduce pipeline latency, coa- clock cycle

lesce sink nodes with split nodes to decrease energy con- . . .
sumption, and slack match [12] the edges of the dataflow The data-driven decomposmomethod [19] is the only

: other known asynchronous synthesis framework for auto-
graph to improve throughput. i . i i X

matically decomposing a slack-elastic program into fine-

Program Visualization. A side benefit of automated con- grain concurrent processes. This method projects each
current dataflow decomposition is that it lets an asyn- high-level program variable into its own process. The dis-
chronous logic designer visualize the maximum potential advantage of this method for FPGA synthesis is that it pro-
concurrency hidden in a sequential program specification.duces processes that can be more coarse-grain than our
Since each concurrent dataflow node implements a simpledataflow nodes and in addition, they are not regular in their
well understood function, by examining the program’s con- functionality. In the worst case, a data-driven decompo-
current dataflow graph, a designer can quickly analyze howsition requires a different circuit to be designed for each

Custom Logic. Custom logic presents a much larger de-
sign space than an FPGA, and there are many circuit opti-
mizations available to improve the performance of the con-

program actions interact with each other. process, limiting the applicability of this method to full-
custom asynchronous designs. Furthermore, the data-driven
7. Related Work decomposition method is less practical for some high-level

program decompositions because it usey@amic single
assignmen{DSA) form! that, by definition, precludes the
synthesis of nested loops (without additional AST modifi-
cations that would syntactically eliminate the nesting).

To illustrate the differences between data-driven decom-
position and concurrent dataflow decomposition, consider
he following example:

Concurrent dataflow graphs are functionally similar to
dataflow program graphs used in a software compiler for the
MIT tagged-token dataflow computer architecture [17]. In
this compiler, program graphs were used for high-level pro-
gram transformations and were then compiled into machine
code for a tagged-token hardware architecture that had ver)}
little resemblance to the original program graph. However,
we use concurrent dataflow graphs to describe the underly-
ing concurrent hardware directly, and not only for sequen- 1pga form is equivalent to SSA form, witth functions replaced by
tial program analyses. explicit assignment statements at the end of selection branches.

*[A%a;b := —a; [-b — Blblb — X7?z; Yiy(z)]]

Table 2 shows the intermediate forms and final decomposed waiting until one of the guards is-ue, and then exe-
processes for both pipeline synthesis methods. Since the cuting one of the statements withteue guard. The

value communicated oY is a function of the value re- notation [] is short-hand fol G — skip], and de-
ceived onX and does not depend anor b, the state- notes waiting for the predicat&to become true. If the
ments X7z and Yly(z) should be projected out of the guards are not mutually exclusive, we use the vertical
selection branch to maximize concurrency in the decom- bar “|” instead of 1.”

posed system [10]. This happens naturally during con- -

current dataflow decomposition, but does not occur during ® Repetition:*[G1 — 510 .. 0 Gn — Snl. The
data-driven decomposition because the selection guéd execution of this command corresponds to choosing
included in the dependency set fof21]. In contrast, since one of thetrue guards and executing the correspond-
our asynchronous FPGA architecture does not have explicit N9 Statement, repeating this until all guards evalu-
conditional outputs, our method requires a fixed format for ate to false. The notationx[5] is short-hand for
split logic that necessitates an extra copy of variabkes *[true — S1.

well as an explicit sink. Observe that concurrent dataflow
decomposition can be applied to the processes produced by
data-driven decomposition to yield a system that is similar ¢ Receive: Y ?v means receive a value over channel
to the one originally generated by our method. In addition, and store it in variable.

the nodes produced by our method can be clustered using .

the techniques outlined by Wong to more closely match the e Probe: The boolean expressiohis true iff a com-

e Send:X'!e means send the value efover channelX.

pipeline stages used in full-custom implementations [20]. munication over channel’ can complete without sus-
pending.
8. Summary ¢ Sequential Compositiors; T

We presented an automated decomposition method for e Parallel CompositionS || T or S, T.
the high-level synthesis of finely pipelined asynchronous
systems. We introduced a new sequential compiler analy-
sis that can transform a sequential program into a regular

e Simultaneous Compositior§ e 7" both S and T are
communication actions and they complete simultane-

set of highly concurrent processes. We designed a pipeline ously.

compiler and showed that it can be used to synthesize logic _)

for pipelined asynchronous FPGAs. B. Compiler Terminology

Acknowledgments What follows is a brief summary of the compiler terms

that we used in this paper. Muchnick provides a com-
The research described in this paper was supported irPlte introduction to modern compiler techniques, including
part by the Multidisciplinary University Research Initia- Static single assignment form [13].
tive (MURI) under the Office of Naval Research Contract .
N00014-00-1-0564, and in part by an NSF CAREER award ~ ® Abstract Syntax Tree (AST): _Compller data structure
under contract CCR 9984299. John Teifel was supported in ~ hat Stores a parsed program in a source-syntax neutral
part by an NSF Graduate Research Fellowship. representation.

e Control Flow Graph (CFG): Compiler data structure

A. Summary of CHP Notation that stores a static representation of a program, and
shows all alternatives of control flow. Nodes in the
The CHP notation we use is based on Hoare’s CSP [7]. graph are basic blocks, straight-line pieces of code
A full description of CHP and its semantics can be found without any branches, and directed edges represent
in [11]. What follows is a short and informal description. branches in control flow. Alef is a CFG node that
defines a variable. Ase is a CFG node that uses a
e Assignment:a := b. This statement means “assign variable.
the value ofb to a.” We also writeal for a := true,
anda] for a := false. e Def-use chain: The control flow paths that connect a

) variabledef to all of its potentiatuses.
e Selection:[G1 — S11...1 Gn — Snl, whereGi's

are boolean expressions (guards) &uid are program e Use-def chains: The control flow paths that connect a
parts. The execution of this command corresponds to variableuse to all of its potentialdefs.

e Reaching definition: A definition reaches a CFG node
when there is a control flow path from the variable’s
definition to that CFG node.

(4]

e Live variable: A variable is live on a CFG edge ifthere [3]
is a path from that edge to @se of the variable that
does not go through aryef. Liveness analysis com-

putes live variable sets along each edge of a CFG.

[71
C. Multiple Channel Actions

(8]

In static token form, channel actions must be treated as

definitions. However, we cannot simply rename channels to
remove multiple channel actions because this changes the
program’s behavior in a non-trivial manner and modifies the
port interface that is expected by its environment. To solve [1q)
this problem we introduce “channel sequencer” processes
as illustrated in the following example:

[

T=x[...A7...Z!...A?...G%g; [11]
[g=0— Zg=1— skip];...]
[12]
To remove multiple channel actions we rename channels:
T =x[...A07... 2 ... Ay7...G?g; G'lg;
[g=0— Z1!lg =1 — skip];...] [13]
and introduce new “channel sequencer” processes: [14]
Ageqg =5 :=0;%[A%;[s =0 — Apla;s:=1 [15]
Is=1— Aila;s:=0 1]
Zseq = 5 :=0;
*[[s=0— Zy?a;0ut :=1;s:=1 [16]
ls=1— G?¢;[g=0— Z7a; out :== 1
lg =1— out :=01];
s:=0 (171
I;lout =0—skip [out=1— Z'lall
[18]

such thatT = A || T || Zseq- Since the size of these
channel sequencers can be on the order of the original Proqsg
cess, it is best to also syntactically coalesce multiple chan-
nel actions where possible (e.g., by merging branches with
channel actions appearing in different branches of the same20]
selection statement).

21
References 124

[1] B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting Equality of
Values in Programg$2roc. of the 15th ACM Symposium on Principles
of Programming Language4988.

(2]

C. Scott AnanianThe Static Single Information ForrMaster’s the-
sis, Massachusetts Institute of Technology, 1999.

[3] Steven M. Burns and Alain J. Martin. Syntax-directed Translation of
Concurrent Programs into Self-timed Circuioc. Fifth MIT Con-

ference on Advanced Research in V,L5188.

R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck.
Efficiently Computing Static Single Assignment Form and the Con-
trol Dependence GrapACM Transactions on Programming Lan-
guages and Systeri(4):451-490, October 1991.

Doug Edwards and Andrew Bardsley. Balsa: An asynchronous hard-
ware synthesis languagéhe Computer Journa#t5(1):12-18, 2002.

David Galloway. The Transmogrifier C Hardware Description Lan-
guage and Compiler for FPGABroc. IEEE Symp. FPGAs for Cus-
tom Computing Machine4995.

C.A.R. Hoare. Communicating Sequential Proces§&zsnmunica-
tions of the ACM21(8):666—-677, 1978

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A Safe Dialect of @SENIX Annual Technical
ConferenceJune 2002.

Rajit Manohar and Alain J. Martin. Slack Elasticity in Concurrent
Computing.Proc. of the Fourth International Conference on the
Mathematics of Program Constructiph998.

Rajit Manohar, Tak-Kwan Lee, and Alain J. Martin. Projection:
A Synthesis Technique for Concurrent SysterRsoceedings of
the Fifth International Symposium on Advanced Research in Asyn-
chronous Circuits and Systep#spril 1999.

Alain J. Martin. Compiling Communicating Processes into Delay-
insensitive VLSI circuitsDistributed Computingl(4), 1986.

A.J. Martin, A. Lines, R. Manohar, M. Nysim, P. Penzes, R. South-
worth, U. V. Cummings, and T.K. Lee. The Design of an Asyn-
chronous MIPS R300@roceedings of the 17th Conference on Ad-
vanced Research in VLSPeptember 1997.

Steven S. MuchnickAdvanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

lan Page. Constructing Hardware-Software Systems from a Single
Description.Journal of VLSI Signal Processing2(1), 1996.

John Teifel and Rajit Manohar. Programmable Asynchronous
Pipeline Arrays.Proceedings of the 13th International Conference
on Field Programmable Logic and Applicatigrieptember 2003.

John Teifel and Rajit Manohar. Highly Pipelined Asynchronous FP-
GAs. Proceedings of the 12th ACM International Symposium on
Field-Programmable Gate Array&ebruary 2004.

Kenneth R. TraubA Compiler for the MIT Tagged-Token Dataflow
Architecture.M.S. Thesis, Massachusetts Institute of Technology,
1986.

Kees van BerkelHandshake Circuits : An Asynchronous Architec-
ture for VLSI ProgrammingCambridge University Press, 1994.

Catherine G. Wong and Alain J. Martin. Data-Driven Process De-
composition for Circuit Synthesi®roc. of the IEEE Conference on
Electronic Circuits and System2001.

Catherine G. Wong and Alain J. Martin. High-Level Synthesis of
Asynchronous Systems by Data-Driven Decomposititmc. of the
40th Design Automation Conferen@903.

Catherine G. Wong. Personal Communication, August 2003.

