
Static Tokens: Using Dataflow to Automate Concurrent Pipeline Synthesis

John Teifel and Rajit Manohar
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853, U.S.A.

Abstract

We describe a new intermediate compiler representation,
static token form, that is suitable for dataflow-style synthe-
sis of high-level asynchronous specifications. Static token
form transforms variables into tokens, and simplifies the
pipelining of asynchronous computations according to their
dataflow graphs. We present a compiler framework that au-
tomates this synthesis method, and show how it can be ap-
plied to pipelined asynchronous FPGA architectures.

1. Introduction

The formal synthesis method of asynchronous design
transforms a high-level sequential hardware specification
into a system of concurrent processes. How the sequen-
tial specification is partitioned into these processes depends
on the particular design point (i.e., area, energy, latency,
throughput, etc.) desired for the resulting system. This
decomposition procedure is difficult to do optimally for
more than one relevant design parameter and in most full-
custom asynchronous designs (e.g., [12]) it is largely done
manually to maintain tight control over performance. In
asynchronous systems that do not need full-custom perfor-
mance, however, automated process decomposition tools
that reduce design time are more important than a hand-
optimized process decomposition. In this paper, we de-
scribe a hardware compiler that uses sequential compiler
analyses to automatically decompose a sequential hardware
description into highly concurrent pipelined circuits.

Recent advances in the design of pipelined asynchronous
FPGA architectures [15, 16] motivated the development of
this hardware compiler. These asynchronous FPGAs have
simple fine-grain programmable pipeline stages that can be
configured to compute functions, copy tokens, or to merge
and split token streams. To use these FPGAs efficiently, we
needed a new decomposition method that produced simple
fine-grain processes from high-level logic specifications.

Previous syntax-directed synthesis methods (e.g., [3, 5,

lexer/parser

AST transformations

sequential compiler analysis

concurrent dataflow decomposition

technology mapping

Abstract Syntax Tree

Concurrent Dataflow Graph

Sequential Control Flow Graph

Canonical Sequential CHP

Sequential CHP Specification

Asynchronous Pipeline Stages

Figure 1. Concurrent pipeline synthesis steps.

18]) fail to produce such pipelines because they cannot take
advantage of fine-grain concurrency that is hidden in high-
level sequential program descriptions. Similarly, thedata-
driven decompositionmethod [19], which projects each
high-level variable onto its own process, does not produce
processes that are simple enough to be directly implemented
on a pipelined asynchronous FPGA architecture.

In contrast, our compiler generates concurrent processes
using only seven types of simple pipeline templates, making
it suitable for both FPGA and custom logic synthesis. Our
main insight was to treat variable definitions as producers
of data tokens and uses of variables as consumers of data
tokens. The compiler, however, muststatically guarantee
that token producers and token consumers will cooperate to
correctly implement the original sequential program.

Figure 1 shows the pipeline synthesis steps automated
by our compiler. The front-end of the compiler accepts
high-level sequential logic specifications written in the CHP
hardware description language, whose syntax is described
in Appendix A. Section 2 describes the Abstract Syntax
Tree (AST) transformations that are necessary to convert

. . .
[G0 −→ . . .
[] G1 −→ . . .
[] . . .
[] Gn−1 −→ . . .
]
. . .

. . .
g := selection(. . .);
[g = 0 −→ . . .
[] g = 1 −→ . . .
[] . . .
[] g = n − 1 −→ . . .
]
. . .

Figure 2. Canonical CHP form: original selection (left)
and selection with integer guard expressions (right).

a parsed CHP program into the canonical CHP form. In
Section 3, we introduce the Static Token (ST) intermediate
compiler representation to analyze the sequential behavior
of a canonical CHP program and to produce an optimized
sequential control flow graph. Using concurrent dataflow
decomposition, in Section 4, we transform the control flow
graph into a concurrent dataflow graph. The concurrent
dataflow graph defines a set of concurrent hardware pro-
cesses that is functionally equivalent to the original sequen-
tial CHP specification and can be directly mapped to an
asynchronous FPGA or to custom circuits.

The remaining sections of this paper are organized as fol-
lows. In Section 5, we present correctness conditions when
concurrent dataflow decomposition can be safely applied.
Section 6 discusses the implementation of the compiler and
our experience in using it to synthesize logic for pipelined
asynchronous FPGAs. We compare related work in Sec-
tion 7 and conclude in Section 8. Common compiler termi-
nology is defined in Appendix B.

2. Canonical CHP Form

To simplify the back-end steps of our pipeline compiler,
we convert the input CHP specification intocanonicalCHP
form. Canonical CHP form is a subset of CHP having the
following restrictions: guard expressions are of the form
“v = i ,” wherev is an integer variable andi is a constant;
all loops are either infinite repetitions (i.e., the outermost
loop), or contain only a single guard of the formv = 1;
every channel action appears at most once in the body of a
CHP process. The first two requirements are a technicality,
and are used to simplify the presentation.

All guard expressions in canonical CHP form must be
rewritten to contain only integer values as shown in the
right part of Figure 2, whereselection is a function that
computes the guard variableg corresponding to the match-
ing guard expression in the original CHP program. Unique
channel actions imply that only a single channel action per
port can appear in the main loop of a sequential program
(e.g.,*[Z ?x ; Z !x] is allowed, but not*[A?x ; Z !x ; Z !x]).

Syntactic AST transformations to remove multiple channel
actions are described in Appendix C. Note that canonical
CHP allows an additional channel send action to appear in
the initialization part of the main program loop.

3. Static Token Form

The goal of the sequential analysis phase of our com-
piler is to transform a canonical CHP program into a form
that we call thestatic token(ST) form. ST form is an ex-
tension of the Static Single Information (SSI) intermediate
compiler representation [2], which in turn is a generaliza-
tion of the Static Single Assignment (SSA) form [4]. The
important properties of SSA and SSI form can be captured
by examining definition/use (def-use) chains in a compiler.
In what follows, we examine the properties of these repre-
sentations by examining the control flow graph (CFG) of
the CHP program.

In SSA form, each variable use in the program has a sin-
gle reaching definition. If there are multiple reaching defini-
tions (at merge points in the control-flow graph), then these
are combined into a single definition usingφ-functions.
Also, each definition of a variable is given a fresh name,
and uses are appropriately updated to reflect the appropriate
(single) reaching definition.

SSI form was introduced to improve backward flow anal-
ysis, and to augment dataflow information using partial path
information. In SSI form, if a definition at program pointx
reaches two uses at pointsy andz , then either all paths from
x to y containz or all paths fromx to z containy . State-
ments of the formx0, x1 := σ(x) are used to create mul-
tiple copies of a single variable, allowing the transformed
program to satisfy the SSI condition.

The concurrency-introducing transformation that we
would like to apply to convert a sequential CHP program
into a fine-grained concurrent version isprojection [10].
To enable the application of projection, one of the stan-
dard sequential transformations applied is to replace assign-
ment statements “v := e” with communication actions, i.e.,
(X !e ‖ X ?v) [7]. This allows us to think of variables and
values as tokens that are received and sent on channels, con-
verting data dependencies into channels. The earliest point
in the program where the communication actionX !e can
be placed is the point at which the variables used ine are
defined. Therefore, one can think of definition points as
generating data tokens that are transformed by expression-
computation blocks, and finally consumed by the uses of
the expression. The goal of static token form is to enable
this interpretation of variable definitions and uses.

Static token form keeps theφ andσ functions of SSI
form, except it re-interprets their execution as well as makes
them truly executable. The statementx := φ(x0, . . . , xn−1)
is now replaced withx := φg(x0, . . . , xn−1) whereg is

an integer-valued variable. Execution of this statement is
equivalent tox := xg , thereby making the condition un-
der which each argument ofφ is used explicit. φg func-
tions are similar toguardedφ functions[1]. The statement
x0, . . . , xn−1 := σ(x) is replaced withx0, . . . , xn−1 :=
φ−1

g (x) whereg is an integer-valued variable. Execution
of this statement is equivalent toxg := x , thereby making
this a conditional definition. Bothφ andφ−1 uncondition-
ally use the variableg .

ST form introduces two new statements,s(x) andIk (x).
Statements(x) usesx without defining any new variable.
This statement is used to consume any unused definitions.
Ik (x) is a statement that asserts that the initial value ofx is
the constantk . This statement is required to initialize vari-
ables at reset and to initialize guard variables in repetition
statements.

Since ST form is generated from a CHP program, we are
guaranteed that the resulting control flow graph is reducible,
which simplifies the placement of the four constructs intro-
duced by ST form. Given the restricted nature of canonical
CHP, the only non-trivial control flow graph configurations
possible are shown in Figure 3, where the dashed boxes cor-
respond to control flow split and merge points.

 S

*[g = 1→ S]

Sn−1S0

tail

headhead

tail

]
[]g = n − 1→ Sn−1

[]g = 1→ S1. . .

[g = 0→ S0

Figure 3. Possible CFG Configurations.

Given a CFG nodeS, the setlivein(S) is the set of vari-
ables that are live on entry to the node,liveout(S) is the
set of variables live on exit from the node,use(S) is the
set of variables used by the node, anddef (S) is the set of
variables defined by the node. We assume that any dead
code has already been eliminated by a standard compiler
optimization pass.

Selections.The statementx := φg(x0, . . . , xn−1) is placed
at merge points in the CFG whenx is live at the merge point,
and there are multiple reaching definitionsx0, . . ., xn−1

through each distinct edge in the merge. More precisely, we
insert aφ function for all variablesx ∈ liveout(S)∩def (S)
whereS is the selection statement (excluding the guard
variableg).

The statementx0, . . . , xn−1 := φ−1
g (x) is placed at the

split point in the CFG when the branches of the selection
contain uses ofx , or if the branches definex andx is live
at the split point. More precisely, we insert aφ−1 function
for each variablex ∈ livein(S) ∩ (use(S) ∪ (liveout(S) ∩
def (S))). If a φ−1 node is inserted at a split point butx
is not live on exit from the selection, thens(x) nodes are
placed at the end of each branch of the selection ifx is not
used in that branch. More precisely, we inserts(x) nodes at
the end of the branchSi when aφ−1 was placed at the split,
and whenx 6∈ (liveout(S) ∪ use(Si)).

Variables are renamed in the obvious way. If there is a
use of a variable in a branch of the selection, it is renamed to
the appropriate version that was generated by theφ−1 func-
tion. Uses of a variable after a selection use the variable
generated with theφ-function at the merge point, if appli-
cable. These rules are the same as the ones used by Ana-
nian [2]. After renaming, we have the following property
that is crucial to the static token form:given a variable, the
control-flow condition that determines when it is defined is
identical to the control-flow condition that determines when
it is used. It is precisely this condition that allows us to
transform variables into tokens.

Repetitions. Repetitions pose a challenge because their
CFG contains nodes that are both splits and merges, they
have loop-carried dependencies, and because the guard vari-
able introduces a special situation with respect toφ-function
placement. The head of the loop can contain bothφ and
φ−1 functions, the body can containφ−1 functions at the
end, and the tail can containφ functions. To illustrate this,
consider the repetition

...
x := init x (...);
g := init g(...);
*[g = 1 −→ S ; x := f (x , ...); g := h(...)];
...

The variablex could be used multiple times. The problem
is that each use ofx occurs under a different control-flow
condition. Using explicitif/then/goto control-flow no-
tation, we would like to write the repetition as

...
x0 := init x (...);
g0 := init g(...);
if g0 = 0 then goto T ;

L : x2 := φ?(x0, x1);
S ; x1 := f (x2, ...); g1 := h(...);
if g1 = 1 then goto L;

T : x3 := φg0(x0, x1);
...

but we are confronted with the problem of choosing theφ
subscript at program pointL. We would like to simply use

g1, except for the problem of the initial value ofg1. We
resolve this by using theI0 statement which, by definition,
solves precisely this problem. We can now useg1 as the
subscript for theφ-function. The next issue is the fact that
bothx0 andx1 have definition conditions that do not match
their use condition. We resolve this by the introduction of
φ−1 functions at program pointsH andB as follows:

...
x0 := init x (...);
g0 := init g(...);

H : h0, h1 := φ−1
g0

(x0);
if g0 = 0 then goto T ;
I0(g1);

L : x2 := φg1(h1, h4);
S ; x1 := f (x2, ...); g1 := h(...);

B : h3, h4 := φ−1
g1

(x1);
if g1 = 1 then goto L;

T : x3 := φg0(h0, h3);
...

In general, the statementx := φg1(x0, x1) is placed
at program pointL, in the head of the repetition CFG,
when the repetition contains uses ofx andx is live atL.
More precisely, we insert aφ function for all variables
x ∈ livein(R) ∩ use(R) whereR is the repetition state-
ment (excluding the guard variableg).

The statementx := φg0(x0, x1) is placed at program
point T , in the tail of the repetition CFG, whenx is live at
T and the repetition contains a reaching definitionx0 from
the head of the CFG and a reaching definitionx1 from the
body of the CFG. More precisely, we insert aφ function for
all variablesx ∈ liveout(R) ∩ def (R).

The statementx0, x1 := φ−1
g1

(x) is placed at program
point B, in the body of the repetition CFG, when aφ
function for x was placed at program pointsL or T . If
x 6∈ liveout(R), we insert an “if g1 = 0 then s(x0)”
statement after theφ−1 function. Similarly, ifx 6∈ use(R)
we insert an “if g1 = 1 then s(x1)” statement after the
φ−1 function.

The statementx0, x1 := φ−1
g0

(x) is placed at program
point H, in the head of the repetition CFG, when aφ
function for x was placed at program pointsL or T . If
x 6∈ liveout(R), we insert an “if g0 = 0 then s(x0)”
statement after theφ−1 function. Similarly, ifx 6∈ use(R)
we insert an “if g0 = 1 then s(x1)” statement after the
φ−1 function.

Compiler Analyses. Transforming a canonical CHP pro-
gram into ST form occurs during three compiler passes.
First, a sequential control flow graph of the program is con-
structed and a liveness analysis is performed to determine
at what program points each variable is live. Second,φ and
φ−1 functions are inserted as necessary around selection

and repetition statements. For programs with nested selec-
tion and repetition statements, it is necessary to iterate over
these first two passes. This is required because the guard
variables of the innerφ andφ−1 functions may change the
liveness analysis of the outer statements and consequently
require the insertion of additionalφ andφ−1 functions. Fi-
nally, all variables are renamed to create a valid ST program
representation.

4. Concurrent Dataflow Decomposition

A concurrent dataflowdecomposition maps a sequential
CHP program in ST form onto a concurrent dataflow graph.
Since all variable definitions and variable uses have match-
ing control-flow conditions in ST form, concurrent dataflow
decomposition is a simple one-to-one mapping of program
actions onto concurrent dataflow nodes. This decomposi-
tion maps variable definitions in the sequential program to
asynchronous token producers in the concurrent graph and
similarly, variable uses to asynchronous token consumers.
The directed edges of the resulting dataflow graph repre-
sent the flow of tokens in the concurrent decomposition,
which correspond to asynchronous channels in a physical
pipeline implementation. Each dataflow graph node repre-
sents a concurrent asynchronous pipeline stage and is one
of seven simple process types.

The seven types of concurrent dataflow nodes are shown
in Figure 4 and their functionality is described below:

Copy ≡ *[A?a; Z0!a, ...,Zn−1!a]
Function ≡ *[A0?a0, ...,An−1?an−1; Z !f (a0, ..., an−1)]
Split ≡ *[C ?c,A?a;

[c = 0 −→ Z0!a[]...[]c = n − 1 −→ Zn−1!a]]
Merge ≡ *[C ?c;

[c = 0 −→ A0?a[]...[]c = n − 1 −→ An−1?a];
Z !a]

Source ≡ *[Z !′′constant ′′]
Sink ≡ *[A?a]
Initializer ≡ a := ′′constant ′′; Z0!a, ...,Zn−1!a;

*[A?a; Z0!a, . . . ,Zn−1!a]

We note that each concurrent dataflow node is simple
enough to be implemented in a pipelined asynchronous
FPGA [15, 16], as well as with custom fine-grain pipelined
circuits. In addition to the seven dataflow nodes, there are
several pseudo dataflow nodes (nodes that are not actually
implemented in hardware) that serve as logical place hold-
ers in the dataflow graph and have no shapes surrounding
their labels. Channel sends (C !) and channel receives (C ?)
are pseudo dataflow nodes and are connection place holders
for environment processes.

We use the following steps to construct a concurrent
dataflow graph from a sequential program in ST form:

 Z0! Zn−1!. . .

Copy

A?

Z!

An−1?. . .

Function

A0?

 Zn−1!. . .Z0!

A?

Split

C?

Z!

An−1?. . .A0?

Merge

C?

 Source

Z!

 Sink

A?

 Z0! Zn−1!. . .

A?

Init.

Figure 4. Concurrent dataflow nodes.

1. Map variables to copy nodes, functions and expres-
sions to function nodes,φ functions to merge nodes,
φ−1 functions to split nodes,s() actions to sink nodes,
constant values to source nodes, andI() actions to ini-
tializer nodes.

2. Add directed edges to the graph, such that they fol-
low the flow of data tokens from variable definitions to
variable uses in the sequential program.

3. Replace (extraneous) copy nodes with pseudo nodes if
the copy node has only one output edge.

4. For each initialization “channel send” action that ap-
pears before the main program loop, concatenate
an initializer node before its corresponding “channel
send” pseudo node.

Straight-Line Programs. Consider the following straight-
line program and its ST form:

Straight ≡ *[A?a; B?b; X !f (a, b); Y !f (b, 1);
D?a; Z !g(a)]

StraightST ≡ *[A?a0; B?b0; X !f (a0, b0); Y !f (b0, 1);
D?a1; Z !g(a1)]

Figure 5(a) shows its initial concurrent dataflow graph after
performing steps 1–2 of the concurrent dataflow decompo-
sition and Figure 5(b) shows the finished dataflow graph af-
ter the extraneous copies have been removed. Observe that
the sequential behavior between the first and second lines
in the original program is completely removed when it is
mapped to a concurrent dataflow graph, since there is no
true data-dependence on the variablea after the program is
converted to ST form. Functions (e.g.,f andg) are treated
as macro expansions for expressions and are not required

(a)

1

gff

Z!Y!X!

a1

D?

b0

B?

a0

A?

(b)

1

gff

Z!Y!X!

a1

D?

b0

B?

a0

A?

Figure 5. Straight-line program: (a) initial dataflow graph
and (b) after removing extraneous copies.

x4

x3

Sink

x1

Sink

a2a1

φg0

φ−1
g0 φ−1

g0

g0

sel

f

X!

Z!

F!

c0

C?

x2

B?

x0

P?

a0

A?

v0

V?

u0

U?

Figure 6. Program with selection statement.

to have unique names because each function “call” maps to
its own function node. Note that source nodes attached to
function nodes could be coalesced into the function node to
decrease the size of the resulting pipeline.

Selections.Consider a program with selection statements

*[U ?u; V ?v ; A?a; P?x ;
[u ∧ v −→ B?x ; C ?c; F !f (a, x , c)
[]else−→ skip
]; Z !a; X !x]

and its corresponding ST form.

*[U ?u0; V ?v0; A?a0; P?x0;
g0 := sel(u0, v0);
a1, a2 := φ−1

g0 (a0);
x1, x3 := φ−1

g0 (x0);
[g0 = 0 −→ B?x2; C ?c0; F !f (a1, x2, c0); s(x1)
[]g0 = 1 −→ s(a2)
]; x4 := φg0(x2, x3);
Z !a0; X !x4]

Figure 6 shows the concurrent dataflow graph for this pro-
gram. SinceZ !a0 is not data dependent on the actions inside
of the selection statement, it can execute concurrently with
the selection statement, whereas in the original sequential
program it executed after the selection statement.

Token Initializations. To illustrate how the token initializer
dataflow node is used, consider a program that uncondition-
ally toggles on which output channel it sends data.

Toggle ≡ s := 0; X !1;
*[A?x ; [¬s −→ X !x[]s −→ Y !x]; s := ¬s]

ToggleST ≡ I0(s0); X !1;
*[A?x0; x1, x2 := φ−1

s0 (x0);
[s0 = 0 −→ X !x1 [] s0 = 1 −→ Y !x2];
s0 := ¬s0]

Note that initializer nodes are generated for bothI0(s0) and
X !1 in the concurrent dataflow graph in Figure 7, and that
theφ−1

s0 function uses the “initialized” value ofs0 instead
of s0 directly.

Repetitions. A program that outputs the firstn positive in-
teger numbers on channelX is listed below and its concur-
rent dataflow graph is shown in Figure 7.

Loop ≡ *[N ?n; G?g ; x := 0;
*[g = 1 −→ X !x ; x := x + 1; g := (x ≤ n)]]

LoopST ≡ *[N ?n0; G?g0; x0 := 0;
H : x3, x4 := φ−1

g0
(x0);

if g0 = 0 then s(x3);
n2,n3 := φ−1

g0
(n0);

if g0 = 0 then s(n2);
if g0 = 0 then goto T ;
I0(g1);

L : x2 := φg1(x4, x6);
n1 := φg1(n3,n5);
X !x2; x1 := x2 + 1; g1 := (x1 ≤ n1);

B : x5, x6 := φ−1
g1

(x1);
if g1 = 0 then s(x5);
n4,n5 := φ−1

g1
(n1);

if g1 = 0 then s(n4);
if g1 = 1 then goto L

T :]

Observe thatφg1 functions at program pointL use the “ini-
tialized” value of g1, whereas theφ−1

g1
functions at pro-

gram pointB use g1 directly. Also note that the node
x3, x4 := φ−1

g0
(x0) is wasteful becausex0 ≡ 0, and so we

could move the “zero-source” fromx0 to x4 in the dataflow
graph. This inefficiency is due to the restrictive syntax of
CHP repetition statements andnotdue to a deficiency in ST
form or concurrent dataflow decomposition. To prevent this
problem, we would need to modify the high-level CHP syn-
tax to allow the initialization of loop-carried variables at the
head of repetition statements, instead of in the main loop.

 φ−1
s0 ¬s

x2

1

x1

0

s0

Y!

X!

x0

A?

0

n5

Sink

n4

φg1

n3

Sink

n2

n1

x6

Sink

x5

φg1

x4

Sink

x3

x+1

x2

x≤n

x1

x0

0φ−1
g1 φ−1

g1

g1

φ−1
g0 φ−1

g0

X!

g0

G?

n0

N?

Figure 7. Toggle (left) and Loop (right) programs.

5. Correctness

In the previous section we have shown how a sequential
program can be automatically transformed into a regular set
of highly concurrent processes using concurrent dataflow
decomposition. It is clear that such a decomposition in-
creases the amount ofslack, or number of pipeline stages,
on channels that interface with the program’s environment.
However, this can change the relative order of actions that
the environment observes on environment channels in the
sequential and concurrent implementations of the program
(although the absolute order of actions on individual chan-
nels is preserved). If a program can function correctly with
an arbitrary amount of slack on its environment channels,
then it islocally slack elastic[9].

In this section we present two theorems validating the
correctness of concurrent dataflow decompositions. The
first uses the properties of slack elastic systems [9] to de-
scribe when this decomposition can be safely applied and
the second uses projection [10] to formally show that a con-
current dataflow graph is equivalent to its sequential ST pro-
gram. The interested reader is referred to [9, 10] for further
details on slack elasticity and projection.

Theorem 1 (correctness)Let P be a sequential program
and E be its environment, such thatP ||E form a closed

system. Concurrent dataflow decomposition is safe to use
onP if the following conditions are satisfied: (1) no shared
variables betweenP and E , (2) guards of selection state-
ments inP andE are syntactically mutually exclusive, and
(3) no probed channels inP andE .

Proof: Condition 1 is stipulated so that we can use the re-
sults derived in [9] for slack elastic systems. Conditions 2
and 3 are sufficient to apply Corollary 2 from [9], which
says thatP will be locally slack elastic. SinceP is locally
slack elastic we can safely apply concurrent dataflow de-
composition toP .

Theorem 1 holds for a large class of asynchronous sys-
tems [9], including an entire microprocessor design [12]
(except for an arbiter in the cache system and a probed chan-
nel in the exception unit). Such programs can always be
syntactically translated into ST form.

Theorem 2 (equivalence)If a sequential programP satis-
fies the conditions stated in Theorem 1, then its concurrent
dataflow graph is equivalent toP .

Proof: (Sketch) SinceP satisfies the conditions in Theorem
1, we can transform it into ST form. We then use projec-
tion [10] to construct a concurrent dataflow graph forP as
follows:

1. Add channel communication actions for all conditional
variables used in theφ andφ−1 functions.

2. Project out all selection branches inP , which is pos-
sible because ST form guarantees that branches have
disjoint projection sets. LetP ′ be the resulting set of
concurrent processes.

3. Apply control duplication[10] to obtain fresh copies
of each guard variable inP ′.

4. Project each variable inP ′ onto its own processes.

5. Decompose initialization actions into their own pro-
cesses.

The resulting processes consist only of concurrent dataflow
nodes and are equivalent toP by projection.

Example: Consider the following simple program.

*[G?g ; Y ?y ;
[g = 0 −→ y := y + 1[]g = 1 −→ skip]; Z !y]

We first convert to ST form and then perform step 1.

*[G?g0; Y ?y0; y1, y2 := φ−1
g0

(y0);
[g0 = 0 −→ Y1!y1[]g0 = 1 −→ Y2!y2];
[g0 = 0 −→ Y1?y1; y3 := y1 + 1; Y3!y3

[]g0 = 1 −→ skip
]; [g0 = 0 −→ Y3?y3[]g0 = 0 −→ Y2?y2];
y4 := φg0(y3, y2); Z !y4]

Since this program is slack elastic, we assert that there is
sufficient non-zero slack on channelsY1, Y2 andY3 such
that the above sequential program will not deadlock. Ap-
plying projection to the variables contained in the original
selection branches, we obtain:

*[G?g0; Y ?y0; y1, y2 := φ−1
g0

(y0);
[g0 = 0 −→ Y1!y1[]g0 = 1 −→ Y2!y2];
[g0 = 0 −→ skip[]g0 = 1 −→ skip];
[g0 = 0 −→ Y3?y3[]g0 = 1 −→ Y2?y2];
y4 := φg0(y3, y2); Z !y4]

‖ *[Y1?y1; y3 := y1 + 1; Y3!y3]

We remove the empty selection statement, merge theφ and
φ−1 functions with the remaining selections, and use con-
trol duplication to copyg0.

*[G?g0; (G1!g0 ‖ G1?g1); (G2!g0 ‖ G2?g2); Y ?y0;
[g1 = 0 −→ y1 := y0; Y1!y1

[]g1 = 1 −→ y2 := y0; Y2!y2];
[g2 = 0 −→ Y3?y3; y4 := y3

[]g2 = 1 −→ Y2?y2; y4 := y2]; Z !y4]
‖ *[Y1?y1; y3 := y1 + 1; Y3!y3]

Finally, we project each variable into its own process.

*[G?g0; G1!g0,G2!g0]
‖ *[G1?g1,Y ?y0; [g1 = 0 −→ y1 := y0; Y1!y1

[]g1 = 1 −→ y2 := y0; Y2!y2]]
‖ *[G2?g2; [g2 = 0 −→ Y3?y3; y4 := y3

[]g2 = 1 −→ Y2?y2; y4 := y2]; Z !y4]
‖ *[Y1?y1; y3 := y1 + 1; Y3!y3]

Observe that this decomposed system is composed entirely
of concurrent dataflow nodes and is equivalent to the system
generated by concurrent dataflow decomposition.

6. Implementation and Applications

The pipeline synthesis framework presented in this paper
has been implemented usingCyclone, a type-safe “C-like”
programming language [8]. At the time of this writing, the
core functionality of this hardware compiler, namely the
sequential compiler analysis and concurrent dataflow de-
composition for programs with selections, is complete and
occupies approximately 3000 lines of code (not including
parsing and AST construction). Although we are continu-
ing work on implementing the analysis for internal repeti-
tions and multiple channel actions, we have a working CHP
compiler that can automatically decompose relatively com-
plex sequential programs. Static token form and concur-
rent dataflow decomposition are sufficiently general such
that other high-level languages could be easily adapted to
substitute for CHP as the front-end language in our pipeline
compiler.

Table 1. Technology mapping examples.
High-level pipeline synthesis FPGA technology mapping

Program CHP actions ST actions dataflow nodes bit-level nodes* logic blocks throughput (MHz)

Fibonacci (32-bit) 8 8 5 160 96 668
Writeback Unit 17 25 19 63 54 658

Loop (4-bit) 6 15 16 48 32 189
*not including source, sink, and initializer nodes

Local Interconnect

Local Interconnect

Outputs to Global Interconnect

Inputs from Global Interconnect

SinkCopy Copy

0/10/10/10/10/10/10/1

Split MergeFunction

Figure 8. Concurrent dataflow graph representation of a
pipelined asynchronous FPGA logic block.

We have found that this compiler generates dataflow
pipelines that are equivalent to dataflow pipelines that we
previously synthesized manually. However, the quality of
these pipelines is sometimes limited by the quality of the se-
quential CHP, especially for programs with selection state-
ments. For example, consider the following two equivalent
programs:

*[G?g ; A?a; B?b;
[g = 0 −→ z := a
[]g = 1 −→ z := b
]; Z !z]

*[G?g ; A?a; B?b;
z := ¬g ∧ (a)

∨g ∧ (b);
Z !z]

The program on the left maps to six dataflow nodes,
whereas the equivalent program on the right requires only
one dataflow node. While an experienced designer may rec-
ognize that the selection statement in the left program is not
semantically necessary, our current compiler does not yet
implement such semantic optimizations.

Asynchronous FPGAs. Recent work has investigated
pipelined asynchronous FPGA architectures [15, 16] that
efficiently implement programmable computation nodes
similar to those used in concurrent dataflow graphs. Fig-
ure 8 shows a concurrent dataflow graph representation of
a typical pipelined asynchronous logic block used in these
FPGA architectures. The asynchronous logic block uses
bit-level dual-rail channels and contains a 4-input function

20

25

30

35

0

0 5 10 15 20 25 30

5

10

15

conditional

FPGA
nodes

N

function/copy

Figure 9. Asynchronous FPGA scaling trends for imple-
menting N-input function, N-way conditional, and N-way
copy (bit-level) dataflow nodes.

node, a two-way conditional split, a two-way conditional
merge, and four-way output copy nodes. In addition, a logic
block has built-in initializer nodes, constant sources, and
sink nodes. Given the functionality of these pipelined asyn-
chronous FPGA architectures, it is clear that they can im-
plement arbitrarily complex concurrent dataflow graphs.

However, before a concurrent dataflow graph can be im-
plemented on an asynchronous FPGA, the graph’s multi-
bit dataflow nodes must first be mapped to bit-level nodes
that are equal in size to the FPGA’s nodes. Observe that
in an asynchronous FPGA we get multi-bit source, sink,
and initializer nodes essentially for free since they are built
into each bit-level logic block. This is not true for func-
tion, conditional, and copy nodes because they have limited
fanin/fanout in an FPGA node, but infinite fanin/fanout in a
dataflow node. Using Figure 9 we can estimate the number
of bit-level FPGA nodes required to implement an N-input
function, N-way conditional, or N-way copy dataflow node.

Table 1 gives statistics for several asynchronous pro-
grams that were synthesized using our pipeline compiler
and technology mapped to an asynchronous FPGA.Fi-
bonacciis a straight-line program that sequentially gener-
ates all of the Fibonacci numbers that can be represented by
32-bit integers. TheMiniMIPS writeback unit[10] is a more
typical asynchronous hardware process that contains sev-
eral selection statements and state variables. TheLooppro-
gram is a 4-bit implementation of the concurrent dataflow
graph shown in Figure 7. Our target FPGA is similar to the

Table 2. Comparing asynchronous pipeline synthesis methods for∗[A?a; b := ¬a; [¬b→ B!b[]b→ X?x;Y !y(x)]].
Decomposition Method Intermediate Form Decomposed Processes

Data-Driven
Decomposition [19]

*[A?a; b := ¬a;
[¬b −→ B !b
[]b −→ X ?x ; Y !y(x)]]

*[A?a; b := ¬a; B0!b,B1!b]
‖ *[B0?b; [¬b −→ skip[]b −→ X ?x ; Y !y(x)]]
‖ *[B1?b; [¬b −→ B !b[]b −→ skip]]

Concurrent
Dataflow
Decomposition

*[A?a0; b0 := ¬a0;

b1, b2 := φ−1
b0 (b0);

[b0 = 0 −→ B !b1

[]b0 = 1 −→ X ?x0; Y !y(x0); s(b2)
]]

*[A?a; B0!¬a]
‖ *[B0?b; Bb !b,Bc !b]
‖ *[Bc?c,Bb?b; [c = 0 −→ B !b[]c = 1 −→ B1!b]]
‖ *[B1?b]
‖ *[X ?x ; Y !y(x)]

logic block shown in Figure 8, contains heavily pipelined
interconnects, and has a peak operating frequency of 700
MHz [16]. We automatically placed and routed the resulting
technology-mapped dataflow graphs onto this FPGA archi-
tecture. Throughput values were obtained from a detailed
switch-level asynchronous FPGA simulator, which used de-
lay values extracted from an asynchronous FPGA laid out
in a typical TSMC 0.18µm process. The Loop program is
slower than the other two benchmarks because its through-
put is limited by the update computation forg1.

Custom Logic. Custom logic presents a much larger de-
sign space than an FPGA, and there are many circuit opti-
mizations available to improve the performance of the con-
current dataflow graph when it is implemented with full-
custom circuits. For example, we can coalesce copy nodes
with other dataflow nodes to reduce pipeline latency, coa-
lesce sink nodes with split nodes to decrease energy con-
sumption, and slack match [12] the edges of the dataflow
graph to improve throughput.

Program Visualization. A side benefit of automated con-
current dataflow decomposition is that it lets an asyn-
chronous logic designer visualize the maximum potential
concurrency hidden in a sequential program specification.
Since each concurrent dataflow node implements a simple
well understood function, by examining the program’s con-
current dataflow graph, a designer can quickly analyze how
program actions interact with each other.

7. Related Work

Concurrent dataflow graphs are functionally similar to
dataflow program graphs used in a software compiler for the
MIT tagged-token dataflow computer architecture [17]. In
this compiler, program graphs were used for high-level pro-
gram transformations and were then compiled into machine
code for a tagged-token hardware architecture that had very
little resemblance to the original program graph. However,
we use concurrent dataflow graphs to describe the underly-
ing concurrent hardware directly, and not only for sequen-
tial program analyses.

High-level language compilers for clocked hardware tra-
ditionally limit the amount of pipelining in the resulting
system. A sequential program is usually synthesized as
combinational logic, with pipelining only introduced across
loop iterations and at procedure calls (e.g., [6]). Since
most synchronous systems are not slack elastic, it is not
safe for them to introduce concurrency and pipelining as
freely as our compiler does when it produces a concurrent
dataflow graph. For example, the Handel-C synchronous
compiler [14], which allows a programmer to use CSP [7]
concurrency and channel communication constructs, as-
sumes most of the parallelism is explicitly specified in the
source program instead of determined by the compiler. The
Handel-C compiler also makes circuit assumptions about
statement execution delays in terms of clock cycles and in-
troduces a high-levelDelay statement, which waits for one
clock cycle.

Thedata-driven decompositionmethod [19] is the only
other known asynchronous synthesis framework for auto-
matically decomposing a slack-elastic program into fine-
grain concurrent processes. This method projects each
high-level program variable into its own process. The dis-
advantage of this method for FPGA synthesis is that it pro-
duces processes that can be more coarse-grain than our
dataflow nodes and in addition, they are not regular in their
functionality. In the worst case, a data-driven decompo-
sition requires a different circuit to be designed for each
process, limiting the applicability of this method to full-
custom asynchronous designs. Furthermore, the data-driven
decomposition method is less practical for some high-level
program decompositions because it uses adynamic single
assignment(DSA) form1 that, by definition, precludes the
synthesis of nested loops (without additional AST modifi-
cations that would syntactically eliminate the nesting).

To illustrate the differences between data-driven decom-
position and concurrent dataflow decomposition, consider
the following example:

*[A?a; b := ¬a; [¬b −→ B !b[]b −→ X ?x ; Y !y(x)]]

1DSA form is equivalent to SSA form, withφ functions replaced by
explicit assignment statements at the end of selection branches.

Table 2 shows the intermediate forms and final decomposed
processes for both pipeline synthesis methods. Since the
value communicated onY is a function of the value re-
ceived onX and does not depend ona or b, the state-
mentsX ?x and Y !y(x) should be projected out of the
selection branch to maximize concurrency in the decom-
posed system [10]. This happens naturally during con-
current dataflow decomposition, but does not occur during
data-driven decomposition because the selection guardb is
included in the dependency set forx [21]. In contrast, since
our asynchronous FPGA architecture does not have explicit
conditional outputs, our method requires a fixed format for
split logic that necessitates an extra copy of variableb as
well as an explicit sink. Observe that concurrent dataflow
decomposition can be applied to the processes produced by
data-driven decomposition to yield a system that is similar
to the one originally generated by our method. In addition,
the nodes produced by our method can be clustered using
the techniques outlined by Wong to more closely match the
pipeline stages used in full-custom implementations [20].

8. Summary

We presented an automated decomposition method for
the high-level synthesis of finely pipelined asynchronous
systems. We introduced a new sequential compiler analy-
sis that can transform a sequential program into a regular
set of highly concurrent processes. We designed a pipeline
compiler and showed that it can be used to synthesize logic
for pipelined asynchronous FPGAs.

Acknowledgments

The research described in this paper was supported in
part by the Multidisciplinary University Research Initia-
tive (MURI) under the Office of Naval Research Contract
N00014-00-1-0564, and in part by an NSF CAREER award
under contract CCR 9984299. John Teifel was supported in
part by an NSF Graduate Research Fellowship.

A. Summary of CHP Notation

The CHP notation we use is based on Hoare’s CSP [7].
A full description of CHP and its semantics can be found
in [11]. What follows is a short and informal description.

• Assignment:a := b. This statement means “assign
the value ofb to a.” We also writea↑ for a := true,
anda↓ for a := false.

• Selection:[G1→ S1 [] ... []Gn → Sn], whereGi ’s
are boolean expressions (guards) andSi ’s are program
parts. The execution of this command corresponds to

waiting until one of the guards istrue, and then exe-
cuting one of the statements with atrue guard. The
notation[G] is short-hand for[G → skip], and de-
notes waiting for the predicateG to become true. If the
guards are not mutually exclusive, we use the vertical
bar “|” instead of “[].”

• Repetition: *[G1 → S1 [] ... [] Gn → Sn]. The
execution of this command corresponds to choosing
one of thetrue guards and executing the correspond-
ing statement, repeating this until all guards evalu-
ate to false. The notation*[S] is short-hand for
*[true → S].

• Send:X !e means send the value ofe over channelX .

• Receive:Y ?v means receive a value over channelY
and store it in variablev .

• Probe: The boolean expressionX is true iff a com-
munication over channelX can complete without sus-
pending.

• Sequential Composition:S ; T

• Parallel Composition:S ‖ T or S ,T .

• Simultaneous Composition:S • T both S andT are
communication actions and they complete simultane-
ously.

B. Compiler Terminology

What follows is a brief summary of the compiler terms
that we used in this paper. Muchnick provides a com-
plete introduction to modern compiler techniques, including
static single assignment form [13].

• Abstract Syntax Tree (AST): Compiler data structure
that stores a parsed program in a source-syntax neutral
representation.

• Control Flow Graph (CFG): Compiler data structure
that stores a static representation of a program, and
shows all alternatives of control flow. Nodes in the
graph are basic blocks, straight-line pieces of code
without any branches, and directed edges represent
branches in control flow. Adef is a CFG node that
defines a variable. Ause is a CFG node that uses a
variable.

• Def-use chain: The control flow paths that connect a
variabledef to all of its potentialuses.

• Use-def chains: The control flow paths that connect a
variableuse to all of its potentialdefs.

• Reaching definition: A definition reaches a CFG node
when there is a control flow path from the variable’s
definition to that CFG node.

• Live variable: A variable is live on a CFG edge if there
is a path from that edge to ause of the variable that
does not go through anydef . Liveness analysis com-
putes live variable sets along each edge of a CFG.

C. Multiple Channel Actions

In static token form, channel actions must be treated as
definitions. However, we cannot simply rename channels to
remove multiple channel actions because this changes the
program’s behavior in a non-trivial manner and modifies the
port interface that is expected by its environment. To solve
this problem we introduce “channel sequencer” processes
as illustrated in the following example:

T ≡ *[. . .A? . . .Z ! . . .A? . . .G?g ;
[g = 0 −→ Z ![]g = 1 −→ skip]; . . .]

To remove multiple channel actions we rename channels:

T
′ ≡ *[. . .A0? . . .Z0! . . .A1? . . .G?g ; G

′
!g ;

[g = 0 −→ Z1![]g = 1 −→ skip]; . . .]

and introduce new “channel sequencer” processes:

Aseq ≡ s := 0; *[A?a; [s = 0 −→ A0!a; s := 1
[]s = 1 −→ A1!a; s := 0]]

Zseq ≡ s := 0;
*[[s = 0 −→ Z0?a; out := 1; s := 1
[]s = 1 −→ G

′
?g ; [g = 0 −→ Z1?a; out := 1

[]g = 1 −→ out := 0];
s := 0

]; [out = 0 −→ skip [] out = 1 −→ Z !a]]

such thatT ≡ Aseq ‖ T
′ ‖ Zseq . Since the size of these

channel sequencers can be on the order of the original pro-
cess, it is best to also syntactically coalesce multiple chan-
nel actions where possible (e.g., by merging branches with
channel actions appearing in different branches of the same
selection statement).

References

[1] B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting Equality of
Values in Programs.Proc. of the 15th ACM Symposium on Principles
of Programming Languages, 1988.

[2] C. Scott Ananian.The Static Single Information Form. Master’s the-
sis, Massachusetts Institute of Technology, 1999.

[3] Steven M. Burns and Alain J. Martin. Syntax-directed Translation of
Concurrent Programs into Self-timed Circuits.Proc. Fifth MIT Con-
ference on Advanced Research in VLSI, 1988.

[4] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck.
Efficiently Computing Static Single Assignment Form and the Con-
trol Dependence Graph.ACM Transactions on Programming Lan-
guages and Systems, 12(4):451-490, October 1991.

[5] Doug Edwards and Andrew Bardsley. Balsa: An asynchronous hard-
ware synthesis language.The Computer Journal, 45(1):12-18, 2002.

[6] David Galloway. The Transmogrifier C Hardware Description Lan-
guage and Compiler for FPGAs.Proc. IEEE Symp. FPGAs for Cus-
tom Computing Machines, 1995.

[7] C.A.R. Hoare. Communicating Sequential Processes.Communica-
tions of the ACM, 21(8):666–677, 1978

[8] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A Safe Dialect of C.USENIX Annual Technical
Conference, June 2002.

[9] Rajit Manohar and Alain J. Martin. Slack Elasticity in Concurrent
Computing.Proc. of the Fourth International Conference on the
Mathematics of Program Construction, 1998.

[10] Rajit Manohar, Tak-Kwan Lee, and Alain J. Martin. Projection:
A Synthesis Technique for Concurrent Systems.Proceedings of
the Fifth International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, April 1999.

[11] Alain J. Martin. Compiling Communicating Processes into Delay-
insensitive VLSI circuits.Distributed Computing, 1(4), 1986.

[12] A.J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. South-
worth, U. V. Cummings, and T.K. Lee. The Design of an Asyn-
chronous MIPS R3000.Proceedings of the 17th Conference on Ad-
vanced Research in VLSI, September 1997.

[13] Steven S. Muchnick.Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

[14] Ian Page. Constructing Hardware-Software Systems from a Single
Description.Journal of VLSI Signal Processing, 12(1), 1996.

[15] John Teifel and Rajit Manohar. Programmable Asynchronous
Pipeline Arrays.Proceedings of the 13th International Conference
on Field Programmable Logic and Applications, September 2003.

[16] John Teifel and Rajit Manohar. Highly Pipelined Asynchronous FP-
GAs. Proceedings of the 12th ACM International Symposium on
Field-Programmable Gate Arrays, February 2004.

[17] Kenneth R. Traub.A Compiler for the MIT Tagged-Token Dataflow
Architecture.M.S. Thesis, Massachusetts Institute of Technology,
1986.

[18] Kees van Berkel.Handshake Circuits : An Asynchronous Architec-
ture for VLSI Programming. Cambridge University Press, 1994.

[19] Catherine G. Wong and Alain J. Martin. Data-Driven Process De-
composition for Circuit Synthesis.Proc. of the IEEE Conference on
Electronic Circuits and Systems, 2001.

[20] Catherine G. Wong and Alain J. Martin. High-Level Synthesis of
Asynchronous Systems by Data-Driven Decomposition.Proc. of the
40th Design Automation Conference, 2003.

[21] Catherine G. Wong. Personal Communication, August 2003.

